Abstract

We have demonstrated a new type of all-optical 2 × 2 switch by using two independent Yb3+-doped nonlinear optical fibers with a long-period fiber grating pair and a 3-dB fiber coupler. A 400-Hz square-wave pulse train at ∼1549.4 nm was fully switched between the two output ports up to 200 Hz by modulated pump signals at 976 nm with a maximum pump power of ∼35 mW, where the extinction ratio at ∼1549.4 nm between the on and the off states was ∼17.5 dB.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Pantell, M. J. F. Digonnet, “A model of nonlinear all-optical switching in doped fibers,” J. Lightwave Technol. 12, 149–156 (1994).
    [CrossRef]
  2. M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3, 44–64 (1997).
    [CrossRef]
  3. P. Elango, J. W. Arkwright, P. L. Chu, G. R. Atkins, “Low-power all-optical broad-band switching device using ytterbium-doped fiber,” IEEE Photon. Technol. Lett. 8, 1032–1034 (1996).
    [CrossRef]
  4. J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, M. J. F. Digonnet, “Experimental and theoretical analysis of the resonant nonlinearity in ytterbium-doped fiber,” J. Lightwave Technol. 16, 798–806 (1998).
    [CrossRef]
  5. M. K. Davis, M. J. F. Digonnet, R. H. Pantell, “Thermal effects in doped fibers,” J. Lightwave Technol. 16, 1013–1023 (1998).
    [CrossRef]
  6. Y. H. Kim, N. S. Kim, Y. Chung, U.-C. Paek, W.-T. Han, “All-optical switching application based on optical nonlinearity of Yb3+ doped aluminosilicate glass fiber with a long-period fiber gratings pair,” Opt. Express 12, 651–656 (2004), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  7. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
    [CrossRef]
  8. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
    [CrossRef]
  9. B. H. Lee, J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt. 38, 3450–3459 (1999).
    [CrossRef]
  10. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  11. J. S. Cho, U.-C. Paek, W.-T. Han, J. Heo, “Fabrication and heat treatment effects on absorption characteristics of glass fibers doped with PbTe semiconductor quantum dots,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. ThC4-1–ThC4-3.
  12. Y. W. Lee, J. Jung, B. Lee, “Polarization-sensitive interference spectrum of long-period fiber grating pair separated by erbium-doped fiber,” IEEE Photon. Technol. Lett. 14, 1312–1314 (2002).
    [CrossRef]
  13. V. Bhatia, D. K. Campbell, T. D’Alberto, G. A. Ten Eyck, D. Sherr, K. A. Murphy, R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature sensitivity for strain and refractive-index sensing,” in Conference on Optical Fiber Communication, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 346–347.
  14. R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
    [CrossRef]
  15. V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
    [CrossRef] [PubMed]
  16. R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969).
  17. G. Keiser, Optical Fiber Communications (McGraw-Hill, New York, 1991).

2004

2002

Y. W. Lee, J. Jung, B. Lee, “Polarization-sensitive interference spectrum of long-period fiber grating pair separated by erbium-doped fiber,” IEEE Photon. Technol. Lett. 14, 1312–1314 (2002).
[CrossRef]

1999

1998

1997

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3, 44–64 (1997).
[CrossRef]

1996

P. Elango, J. W. Arkwright, P. L. Chu, G. R. Atkins, “Low-power all-optical broad-band switching device using ytterbium-doped fiber,” IEEE Photon. Technol. Lett. 8, 1032–1034 (1996).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

1994

R. H. Pantell, M. J. F. Digonnet, “A model of nonlinear all-optical switching in doped fibers,” J. Lightwave Technol. 12, 149–156 (1994).
[CrossRef]

1993

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

1989

Andrejco, M. J.

Arkwright, J. W.

J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, M. J. F. Digonnet, “Experimental and theoretical analysis of the resonant nonlinearity in ytterbium-doped fiber,” J. Lightwave Technol. 16, 798–806 (1998).
[CrossRef]

P. Elango, J. W. Arkwright, P. L. Chu, G. R. Atkins, “Low-power all-optical broad-band switching device using ytterbium-doped fiber,” IEEE Photon. Technol. Lett. 8, 1032–1034 (1996).
[CrossRef]

Atkins, G. R.

J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, M. J. F. Digonnet, “Experimental and theoretical analysis of the resonant nonlinearity in ytterbium-doped fiber,” J. Lightwave Technol. 16, 798–806 (1998).
[CrossRef]

P. Elango, J. W. Arkwright, P. L. Chu, G. R. Atkins, “Low-power all-optical broad-band switching device using ytterbium-doped fiber,” IEEE Photon. Technol. Lett. 8, 1032–1034 (1996).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

V. Bhatia, D. K. Campbell, T. D’Alberto, G. A. Ten Eyck, D. Sherr, K. A. Murphy, R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature sensitivity for strain and refractive-index sensing,” in Conference on Optical Fiber Communication, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 346–347.

Campbell, D. K.

V. Bhatia, D. K. Campbell, T. D’Alberto, G. A. Ten Eyck, D. Sherr, K. A. Murphy, R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature sensitivity for strain and refractive-index sensing,” in Conference on Optical Fiber Communication, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 346–347.

Cho, J. S.

J. S. Cho, U.-C. Paek, W.-T. Han, J. Heo, “Fabrication and heat treatment effects on absorption characteristics of glass fibers doped with PbTe semiconductor quantum dots,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. ThC4-1–ThC4-3.

Chu, P. L.

P. Elango, J. W. Arkwright, P. L. Chu, G. R. Atkins, “Low-power all-optical broad-band switching device using ytterbium-doped fiber,” IEEE Photon. Technol. Lett. 8, 1032–1034 (1996).
[CrossRef]

Chung, Y.

Claus, R. O.

V. Bhatia, D. K. Campbell, T. D’Alberto, G. A. Ten Eyck, D. Sherr, K. A. Murphy, R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature sensitivity for strain and refractive-index sensing,” in Conference on Optical Fiber Communication, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 346–347.

D’Alberto, T.

V. Bhatia, D. K. Campbell, T. D’Alberto, G. A. Ten Eyck, D. Sherr, K. A. Murphy, R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature sensitivity for strain and refractive-index sensing,” in Conference on Optical Fiber Communication, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 346–347.

Davis, M. K.

Delong, K. W.

Digonnet, M. J. F.

M. K. Davis, M. J. F. Digonnet, R. H. Pantell, “Thermal effects in doped fibers,” J. Lightwave Technol. 16, 1013–1023 (1998).
[CrossRef]

J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, M. J. F. Digonnet, “Experimental and theoretical analysis of the resonant nonlinearity in ytterbium-doped fiber,” J. Lightwave Technol. 16, 798–806 (1998).
[CrossRef]

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3, 44–64 (1997).
[CrossRef]

R. H. Pantell, M. J. F. Digonnet, “A model of nonlinear all-optical switching in doped fibers,” J. Lightwave Technol. 12, 149–156 (1994).
[CrossRef]

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

Elango, P.

J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, M. J. F. Digonnet, “Experimental and theoretical analysis of the resonant nonlinearity in ytterbium-doped fiber,” J. Lightwave Technol. 16, 798–806 (1998).
[CrossRef]

P. Elango, J. W. Arkwright, P. L. Chu, G. R. Atkins, “Low-power all-optical broad-band switching device using ytterbium-doped fiber,” IEEE Photon. Technol. Lett. 8, 1032–1034 (1996).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Han, W.-T.

Y. H. Kim, N. S. Kim, Y. Chung, U.-C. Paek, W.-T. Han, “All-optical switching application based on optical nonlinearity of Yb3+ doped aluminosilicate glass fiber with a long-period fiber gratings pair,” Opt. Express 12, 651–656 (2004), http://www.opticsexpress.org .
[CrossRef] [PubMed]

J. S. Cho, U.-C. Paek, W.-T. Han, J. Heo, “Fabrication and heat treatment effects on absorption characteristics of glass fibers doped with PbTe semiconductor quantum dots,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. ThC4-1–ThC4-3.

Heo, J.

J. S. Cho, U.-C. Paek, W.-T. Han, J. Heo, “Fabrication and heat treatment effects on absorption characteristics of glass fibers doped with PbTe semiconductor quantum dots,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. ThC4-1–ThC4-3.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Jung, J.

Y. W. Lee, J. Jung, B. Lee, “Polarization-sensitive interference spectrum of long-period fiber grating pair separated by erbium-doped fiber,” IEEE Photon. Technol. Lett. 14, 1312–1314 (2002).
[CrossRef]

Keiser, G.

G. Keiser, Optical Fiber Communications (McGraw-Hill, New York, 1991).

Kim, N. S.

Kim, Y. H.

Lee, B.

Y. W. Lee, J. Jung, B. Lee, “Polarization-sensitive interference spectrum of long-period fiber grating pair separated by erbium-doped fiber,” IEEE Photon. Technol. Lett. 14, 1312–1314 (2002).
[CrossRef]

Lee, B. H.

Lee, Y. W.

Y. W. Lee, J. Jung, B. Lee, “Polarization-sensitive interference spectrum of long-period fiber grating pair separated by erbium-doped fiber,” IEEE Photon. Technol. Lett. 14, 1312–1314 (2002).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Mizrahi, V.

Murphy, K. A.

V. Bhatia, D. K. Campbell, T. D’Alberto, G. A. Ten Eyck, D. Sherr, K. A. Murphy, R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature sensitivity for strain and refractive-index sensing,” in Conference on Optical Fiber Communication, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 346–347.

Nishii, J.

Paek, U.-C.

Y. H. Kim, N. S. Kim, Y. Chung, U.-C. Paek, W.-T. Han, “All-optical switching application based on optical nonlinearity of Yb3+ doped aluminosilicate glass fiber with a long-period fiber gratings pair,” Opt. Express 12, 651–656 (2004), http://www.opticsexpress.org .
[CrossRef] [PubMed]

J. S. Cho, U.-C. Paek, W.-T. Han, J. Heo, “Fabrication and heat treatment effects on absorption characteristics of glass fibers doped with PbTe semiconductor quantum dots,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. ThC4-1–ThC4-3.

Pantell, R. H.

M. K. Davis, M. J. F. Digonnet, R. H. Pantell, “Thermal effects in doped fibers,” J. Lightwave Technol. 16, 1013–1023 (1998).
[CrossRef]

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3, 44–64 (1997).
[CrossRef]

R. H. Pantell, M. J. F. Digonnet, “A model of nonlinear all-optical switching in doped fibers,” J. Lightwave Technol. 12, 149–156 (1994).
[CrossRef]

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969).

Puthoff, H. E.

R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969).

Sadowski, R. W.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3, 44–64 (1997).
[CrossRef]

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

Saifi, M. A.

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Shaw, H. J.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3, 44–64 (1997).
[CrossRef]

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

Sherr, D.

V. Bhatia, D. K. Campbell, T. D’Alberto, G. A. Ten Eyck, D. Sherr, K. A. Murphy, R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature sensitivity for strain and refractive-index sensing,” in Conference on Optical Fiber Communication, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 346–347.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Stegeman, G. I.

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Ten Eyck, G. A.

V. Bhatia, D. K. Campbell, T. D’Alberto, G. A. Ten Eyck, D. Sherr, K. A. Murphy, R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature sensitivity for strain and refractive-index sensing,” in Conference on Optical Fiber Communication, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 346–347.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Whitbread, T.

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Appl. Opt.

IEEE Photon. Technol. Lett.

P. Elango, J. W. Arkwright, P. L. Chu, G. R. Atkins, “Low-power all-optical broad-band switching device using ytterbium-doped fiber,” IEEE Photon. Technol. Lett. 8, 1032–1034 (1996).
[CrossRef]

Y. W. Lee, J. Jung, B. Lee, “Polarization-sensitive interference spectrum of long-period fiber grating pair separated by erbium-doped fiber,” IEEE Photon. Technol. Lett. 14, 1312–1314 (2002).
[CrossRef]

J. Lightwave Technol.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, M. J. F. Digonnet, “Experimental and theoretical analysis of the resonant nonlinearity in ytterbium-doped fiber,” J. Lightwave Technol. 16, 798–806 (1998).
[CrossRef]

M. K. Davis, M. J. F. Digonnet, R. H. Pantell, “Thermal effects in doped fibers,” J. Lightwave Technol. 16, 1013–1023 (1998).
[CrossRef]

R. H. Pantell, M. J. F. Digonnet, “A model of nonlinear all-optical switching in doped fibers,” J. Lightwave Technol. 12, 149–156 (1994).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,” Opt. Fiber Technol. 3, 44–64 (1997).
[CrossRef]

Opt. Lett.

Other

R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969).

G. Keiser, Optical Fiber Communications (McGraw-Hill, New York, 1991).

V. Bhatia, D. K. Campbell, T. D’Alberto, G. A. Ten Eyck, D. Sherr, K. A. Murphy, R. O. Claus, “Standard optical fiber long-period gratings with reduced temperature sensitivity for strain and refractive-index sensing,” in Conference on Optical Fiber Communication, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 346–347.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

J. S. Cho, U.-C. Paek, W.-T. Han, J. Heo, “Fabrication and heat treatment effects on absorption characteristics of glass fibers doped with PbTe semiconductor quantum dots,” in Optical Fiber Communication Conference, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. ThC4-1–ThC4-3.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the propagation of light through a LPG pair with a doped fiber.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup for (a) measuring the pump-induced phase change in a LPG pair with a Yb3+-doped fiber and (b) a 2 × 2 switching operation that uses two independent Yb3+-doped fibers with a LPG pair; thicker lines are for optical fibers and thinner lines are for electrical cables. The phases of the two independent function generators were synchronized by the phase-lock loop (PLL) of the function generators (FG).

Fig. 3
Fig. 3

Transmission spectra at 1549–1559 nm of (a) the 25.5-cm-long Yb3+-doped fiber with a LPG pair (Port I) and (b) the 25.6-cm long Yb3+-doped fiber with a LPG pair (Port II) on pumping with the LD at 976 nm.

Fig. 4
Fig. 4

Average wavelength shift at three destructively interfered wavelengths near 1550 nm and its corresponding phase shift with the launched pump power in (a) the 25.5-cm-long Yb3+-doped fiber with a LPG pair (Port I) and (b) the 25.6-cm-long Yb3+-doped fiber with a LPG pair (Port II). Dashed lines represent the estimated pump-induced phase change from the theoretical model.4,14

Fig. 5
Fig. 5

Transmission spectrum of Port I and Port II after each LPG pair was adjusted with the Yb3+-doped fiber to have a π-phase difference near 1549.4 nm.

Fig. 6
Fig. 6

Results of all-optical switching of 400 Hz square-wave pulses of 1549.4-nm light in (a) Port I and (b) Port II on pumping at 976 nm with 100-Hz square-wave pulses by use of the function generator (thicker solid lines for the TLS signals after the LPG pair; thicker dashed lines for the pump signals; thinner solid lines for the TLS signals before the LPG pair).

Fig. 7
Fig. 7

Results of all-optical switching of 400-Hz square-wave pulses of 1549.4-nm light in (a) Port I and (b) Port II on pumping at 976 nm with 200-Hz square-wave pulses by use of the function generator (thicker solid lines for the TLS signals after the LPG pair; thicker dashed lines for the pump signals; thinner solid lines for the TLS signals before the LPG pair).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ψ = ( β core β clad ) 2 L 2 + ( β core β clad ) L 1 Δ β d + 2 tan 1 [ Δ β tan ( q d ) 2 q ] ,
ψ = ( β core β clad ) 2 L 2 + ( β core β clad ) L 1 = 2 π λ s ( Δ n 2 L 2 + Δ n L 1 ) ,
ψ = 2 π λ s + Δ λ [ ( Δ n + Δ λ d d λ Δ n ) 2 L 2 + ( Δ n + Δ λ d d λ Δ n ) L 1 + 0 L 1 Δ n core ( z ) d z + Δ λ 0 L 1 d d λ Δ n core ( z ) d z ] .
Δ ψ = 2 π λ s 0 L 1 Δ n core ( z ) d z = 2 π s Δ λ 2 π λ s Δ λ 0 L 1 d d λ Δ n core ( z ) d z ,
s = λ s 2 ( Δ n λ s d d λ Δ n ) 2 L 2 + ( Δ n λ s d d λ Δ n ) L 1 ,
Δ ψ = 2 π λ s 0 L 1 Δ n core ( z ) d z 2 π s Δ λ .
Δ ψ ( λ s ) = π e 2 4 h n 0 m ɛ 0 c 2 ( n 0 2 + 2 ) 2 9 λ p λ s τ 2 S P abs A ξ ,
P p ( 0 ) = P abs 1 exp [ α p L 1 + ( P abs / A I p , sat ) ] ,

Metrics