Abstract

Measurement of the key thermo-optic properties of AgGaSe2 in the temperature range below 300 K is reported. Values of these properties on cooling become favorable for the higher average-power operation of nonlinear optical frequency converters using this material.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Iseler, “Thermal expansion and seeded Bridgman growth of AgGaSe2,” J. Cryst. Growth 41, 146–150 (1977).
    [CrossRef]
  2. N. P. Barnes, D. J. Gettemy, J. R. Hietanen, R. A. Iannini, “Parametric amplification in AgGaSe2,” Appl. Opt. 28, 5162–5168 (1989).
    [CrossRef] [PubMed]
  3. K. L. Schepler, M. D. Turner, P. A. Budni, “High-average-power nonlinear frequency conversion in AgGaSe2,” in Advanced Solid-State Lasers, G. Dubei, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 325–328.
  4. G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second-harmonic generation in AgGaSe2 crystal,” J. Appl. Phys. 74, 5282–5284 (1993).
    [CrossRef]
  5. C. L. Marquardt, D. G. Cooper, P. A. Budni, M. G. Knights, K. L. Schepler, R. DeDomenico, G. C. Catella, “Thermal lensing in silver gallium selenide parametric oscillator crystals,” Appl. Opt. 33, 3192–3197 (1994).
    [CrossRef] [PubMed]
  6. G. C. Catella, D. S. Burlage, J. D. Beasley, C. L. Marquardt, “Modeling and comparison with recent lensing experiments in AgGaSe2 and ZnGeP2,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion,” N. Peygambar-ian, H. Everitt, R. C. Eckardt, D. D. Lowenthal, eds., Proc. SPIE2145, 272–281 (1994).
    [CrossRef]
  7. N. Menyuk, G. W. Iseler, A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422–424 (1976).
    [CrossRef]
  8. G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2temperature-dependent nonlinear devices,” J. Phys. D. 27, 231–234 (1994).
    [CrossRef]
  9. See, for example, C. Kittel, Introduction to Solid State Physics, 2nd ed. (Wiley, New York, 1960).
  10. R. C. Campbell, S. E. Smith, “Flash diffusivity method,” Electron. Cooling 8, 34–40 (2002).
  11. Test Method E1461-01, “Standard test method for thermal diffusivity by the flash method,” in Annual Book of ASTM Standards (American Society for Testing Materials, Philadelphia, Pa., 2001), Vol. 14.02, pp. 1–13.
  12. W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32, 1679–1684 (1961).
    [CrossRef]
  13. J. A. Koski, “Improved data reduction methods for laser pulse diffusivity determination with the use of minicomputers,” in Proceedings of the Eighth Symposium on Thermophysical Properties, Vol. II, J. V. Sengers, ed. (American Institute of Physics, New York, 1981), pp. 94–103.
  14. J. D. Beasley, “Thermal conductivities of some novel nonlinear optical materials,” Appl. Opt. 33, 1000–1003 (1994).
    [CrossRef] [PubMed]
  15. E. G. Wolff, R. C. Savedra, “Precision interferometric dilatometer,” Rev. Sci. Instrum. 56, 1313–1319 (1985).
    [CrossRef]
  16. I. V. Bodnar, N. S. Orlova, “X-ray evidence on thermal-expansion anisotropy in AgGaSe2 at 80–650 K,” Inorg. Mater. 23, 680–682 (1987).
  17. J. D. James, J. A. Spittle, S. G. R. Brown, R. W. Evans, “A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures,” Meas. Sci. Technol. 12, R1–R15 (2001).
    [CrossRef]
  18. D. Yang, M. E. Thomas, W. J. Trof, S. G. Kaplan, “Infrared refractive index measurements using a new method,” in Optical Diagnostic Methods for Inorganic Materials II, L. M. Hanssen, ed., Proc. SPIE4103, 42–52 (2000).
    [CrossRef]
  19. E. Tanaka, K. Kato, “Thermo-optic dispersion formula of AgGaSe2and its practical applications,” Appl. Opt. 37, 561–564 (1998).
    [CrossRef]

2002

R. C. Campbell, S. E. Smith, “Flash diffusivity method,” Electron. Cooling 8, 34–40 (2002).

2001

J. D. James, J. A. Spittle, S. G. R. Brown, R. W. Evans, “A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures,” Meas. Sci. Technol. 12, R1–R15 (2001).
[CrossRef]

1998

1994

1993

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second-harmonic generation in AgGaSe2 crystal,” J. Appl. Phys. 74, 5282–5284 (1993).
[CrossRef]

1989

1987

I. V. Bodnar, N. S. Orlova, “X-ray evidence on thermal-expansion anisotropy in AgGaSe2 at 80–650 K,” Inorg. Mater. 23, 680–682 (1987).

1985

E. G. Wolff, R. C. Savedra, “Precision interferometric dilatometer,” Rev. Sci. Instrum. 56, 1313–1319 (1985).
[CrossRef]

1977

G. W. Iseler, “Thermal expansion and seeded Bridgman growth of AgGaSe2,” J. Cryst. Growth 41, 146–150 (1977).
[CrossRef]

1976

N. Menyuk, G. W. Iseler, A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422–424 (1976).
[CrossRef]

1961

W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32, 1679–1684 (1961).
[CrossRef]

Abbott, G. L.

W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32, 1679–1684 (1961).
[CrossRef]

Barnes, N. P.

Beasley, J. D.

J. D. Beasley, “Thermal conductivities of some novel nonlinear optical materials,” Appl. Opt. 33, 1000–1003 (1994).
[CrossRef] [PubMed]

G. C. Catella, D. S. Burlage, J. D. Beasley, C. L. Marquardt, “Modeling and comparison with recent lensing experiments in AgGaSe2 and ZnGeP2,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion,” N. Peygambar-ian, H. Everitt, R. C. Eckardt, D. D. Lowenthal, eds., Proc. SPIE2145, 272–281 (1994).
[CrossRef]

Bhar, G. C.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2temperature-dependent nonlinear devices,” J. Phys. D. 27, 231–234 (1994).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second-harmonic generation in AgGaSe2 crystal,” J. Appl. Phys. 74, 5282–5284 (1993).
[CrossRef]

Bodnar, I. V.

I. V. Bodnar, N. S. Orlova, “X-ray evidence on thermal-expansion anisotropy in AgGaSe2 at 80–650 K,” Inorg. Mater. 23, 680–682 (1987).

Brown, S. G. R.

J. D. James, J. A. Spittle, S. G. R. Brown, R. W. Evans, “A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures,” Meas. Sci. Technol. 12, R1–R15 (2001).
[CrossRef]

Budni, P. A.

C. L. Marquardt, D. G. Cooper, P. A. Budni, M. G. Knights, K. L. Schepler, R. DeDomenico, G. C. Catella, “Thermal lensing in silver gallium selenide parametric oscillator crystals,” Appl. Opt. 33, 3192–3197 (1994).
[CrossRef] [PubMed]

K. L. Schepler, M. D. Turner, P. A. Budni, “High-average-power nonlinear frequency conversion in AgGaSe2,” in Advanced Solid-State Lasers, G. Dubei, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 325–328.

Burlage, D. S.

G. C. Catella, D. S. Burlage, J. D. Beasley, C. L. Marquardt, “Modeling and comparison with recent lensing experiments in AgGaSe2 and ZnGeP2,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion,” N. Peygambar-ian, H. Everitt, R. C. Eckardt, D. D. Lowenthal, eds., Proc. SPIE2145, 272–281 (1994).
[CrossRef]

Butler, C. P.

W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32, 1679–1684 (1961).
[CrossRef]

Campbell, R. C.

R. C. Campbell, S. E. Smith, “Flash diffusivity method,” Electron. Cooling 8, 34–40 (2002).

Catella, G. C.

C. L. Marquardt, D. G. Cooper, P. A. Budni, M. G. Knights, K. L. Schepler, R. DeDomenico, G. C. Catella, “Thermal lensing in silver gallium selenide parametric oscillator crystals,” Appl. Opt. 33, 3192–3197 (1994).
[CrossRef] [PubMed]

G. C. Catella, D. S. Burlage, J. D. Beasley, C. L. Marquardt, “Modeling and comparison with recent lensing experiments in AgGaSe2 and ZnGeP2,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion,” N. Peygambar-ian, H. Everitt, R. C. Eckardt, D. D. Lowenthal, eds., Proc. SPIE2145, 272–281 (1994).
[CrossRef]

Chatterjee, U.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2temperature-dependent nonlinear devices,” J. Phys. D. 27, 231–234 (1994).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second-harmonic generation in AgGaSe2 crystal,” J. Appl. Phys. 74, 5282–5284 (1993).
[CrossRef]

Cooper, D. G.

Das, S.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2temperature-dependent nonlinear devices,” J. Phys. D. 27, 231–234 (1994).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second-harmonic generation in AgGaSe2 crystal,” J. Appl. Phys. 74, 5282–5284 (1993).
[CrossRef]

DeDomenico, R.

Evans, R. W.

J. D. James, J. A. Spittle, S. G. R. Brown, R. W. Evans, “A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures,” Meas. Sci. Technol. 12, R1–R15 (2001).
[CrossRef]

Feigelson, R. S.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2temperature-dependent nonlinear devices,” J. Phys. D. 27, 231–234 (1994).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second-harmonic generation in AgGaSe2 crystal,” J. Appl. Phys. 74, 5282–5284 (1993).
[CrossRef]

Gettemy, D. J.

Hietanen, J. R.

Iannini, R. A.

Iseler, G. W.

G. W. Iseler, “Thermal expansion and seeded Bridgman growth of AgGaSe2,” J. Cryst. Growth 41, 146–150 (1977).
[CrossRef]

N. Menyuk, G. W. Iseler, A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422–424 (1976).
[CrossRef]

James, J. D.

J. D. James, J. A. Spittle, S. G. R. Brown, R. W. Evans, “A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures,” Meas. Sci. Technol. 12, R1–R15 (2001).
[CrossRef]

Jenkins, R. J.

W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32, 1679–1684 (1961).
[CrossRef]

Kaplan, S. G.

D. Yang, M. E. Thomas, W. J. Trof, S. G. Kaplan, “Infrared refractive index measurements using a new method,” in Optical Diagnostic Methods for Inorganic Materials II, L. M. Hanssen, ed., Proc. SPIE4103, 42–52 (2000).
[CrossRef]

Kato, K.

Kittel, C.

See, for example, C. Kittel, Introduction to Solid State Physics, 2nd ed. (Wiley, New York, 1960).

Knights, M. G.

Koski, J. A.

J. A. Koski, “Improved data reduction methods for laser pulse diffusivity determination with the use of minicomputers,” in Proceedings of the Eighth Symposium on Thermophysical Properties, Vol. II, J. V. Sengers, ed. (American Institute of Physics, New York, 1981), pp. 94–103.

Marquardt, C. L.

C. L. Marquardt, D. G. Cooper, P. A. Budni, M. G. Knights, K. L. Schepler, R. DeDomenico, G. C. Catella, “Thermal lensing in silver gallium selenide parametric oscillator crystals,” Appl. Opt. 33, 3192–3197 (1994).
[CrossRef] [PubMed]

G. C. Catella, D. S. Burlage, J. D. Beasley, C. L. Marquardt, “Modeling and comparison with recent lensing experiments in AgGaSe2 and ZnGeP2,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion,” N. Peygambar-ian, H. Everitt, R. C. Eckardt, D. D. Lowenthal, eds., Proc. SPIE2145, 272–281 (1994).
[CrossRef]

Menyuk, N.

N. Menyuk, G. W. Iseler, A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422–424 (1976).
[CrossRef]

Mooradian, A.

N. Menyuk, G. W. Iseler, A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422–424 (1976).
[CrossRef]

Orlova, N. S.

I. V. Bodnar, N. S. Orlova, “X-ray evidence on thermal-expansion anisotropy in AgGaSe2 at 80–650 K,” Inorg. Mater. 23, 680–682 (1987).

Parker, W. J.

W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32, 1679–1684 (1961).
[CrossRef]

Route, R. K.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2temperature-dependent nonlinear devices,” J. Phys. D. 27, 231–234 (1994).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second-harmonic generation in AgGaSe2 crystal,” J. Appl. Phys. 74, 5282–5284 (1993).
[CrossRef]

Rudra, A. M.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2temperature-dependent nonlinear devices,” J. Phys. D. 27, 231–234 (1994).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second-harmonic generation in AgGaSe2 crystal,” J. Appl. Phys. 74, 5282–5284 (1993).
[CrossRef]

Savedra, R. C.

E. G. Wolff, R. C. Savedra, “Precision interferometric dilatometer,” Rev. Sci. Instrum. 56, 1313–1319 (1985).
[CrossRef]

Schepler, K. L.

C. L. Marquardt, D. G. Cooper, P. A. Budni, M. G. Knights, K. L. Schepler, R. DeDomenico, G. C. Catella, “Thermal lensing in silver gallium selenide parametric oscillator crystals,” Appl. Opt. 33, 3192–3197 (1994).
[CrossRef] [PubMed]

K. L. Schepler, M. D. Turner, P. A. Budni, “High-average-power nonlinear frequency conversion in AgGaSe2,” in Advanced Solid-State Lasers, G. Dubei, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 325–328.

Smith, S. E.

R. C. Campbell, S. E. Smith, “Flash diffusivity method,” Electron. Cooling 8, 34–40 (2002).

Spittle, J. A.

J. D. James, J. A. Spittle, S. G. R. Brown, R. W. Evans, “A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures,” Meas. Sci. Technol. 12, R1–R15 (2001).
[CrossRef]

Tanaka, E.

Thomas, M. E.

D. Yang, M. E. Thomas, W. J. Trof, S. G. Kaplan, “Infrared refractive index measurements using a new method,” in Optical Diagnostic Methods for Inorganic Materials II, L. M. Hanssen, ed., Proc. SPIE4103, 42–52 (2000).
[CrossRef]

Trof, W. J.

D. Yang, M. E. Thomas, W. J. Trof, S. G. Kaplan, “Infrared refractive index measurements using a new method,” in Optical Diagnostic Methods for Inorganic Materials II, L. M. Hanssen, ed., Proc. SPIE4103, 42–52 (2000).
[CrossRef]

Turner, M. D.

K. L. Schepler, M. D. Turner, P. A. Budni, “High-average-power nonlinear frequency conversion in AgGaSe2,” in Advanced Solid-State Lasers, G. Dubei, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 325–328.

Wolff, E. G.

E. G. Wolff, R. C. Savedra, “Precision interferometric dilatometer,” Rev. Sci. Instrum. 56, 1313–1319 (1985).
[CrossRef]

Yang, D.

D. Yang, M. E. Thomas, W. J. Trof, S. G. Kaplan, “Infrared refractive index measurements using a new method,” in Optical Diagnostic Methods for Inorganic Materials II, L. M. Hanssen, ed., Proc. SPIE4103, 42–52 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

N. Menyuk, G. W. Iseler, A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422–424 (1976).
[CrossRef]

Electron. Cooling

R. C. Campbell, S. E. Smith, “Flash diffusivity method,” Electron. Cooling 8, 34–40 (2002).

Inorg. Mater.

I. V. Bodnar, N. S. Orlova, “X-ray evidence on thermal-expansion anisotropy in AgGaSe2 at 80–650 K,” Inorg. Mater. 23, 680–682 (1987).

J. Appl. Phys.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. K. Route, R. S. Feigelson, “Temperature effects in second-harmonic generation in AgGaSe2 crystal,” J. Appl. Phys. 74, 5282–5284 (1993).
[CrossRef]

W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32, 1679–1684 (1961).
[CrossRef]

J. Cryst. Growth

G. W. Iseler, “Thermal expansion and seeded Bridgman growth of AgGaSe2,” J. Cryst. Growth 41, 146–150 (1977).
[CrossRef]

J. Phys. D.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of AgGaSe2temperature-dependent nonlinear devices,” J. Phys. D. 27, 231–234 (1994).
[CrossRef]

Meas. Sci. Technol.

J. D. James, J. A. Spittle, S. G. R. Brown, R. W. Evans, “A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures,” Meas. Sci. Technol. 12, R1–R15 (2001).
[CrossRef]

Rev. Sci. Instrum.

E. G. Wolff, R. C. Savedra, “Precision interferometric dilatometer,” Rev. Sci. Instrum. 56, 1313–1319 (1985).
[CrossRef]

Other

D. Yang, M. E. Thomas, W. J. Trof, S. G. Kaplan, “Infrared refractive index measurements using a new method,” in Optical Diagnostic Methods for Inorganic Materials II, L. M. Hanssen, ed., Proc. SPIE4103, 42–52 (2000).
[CrossRef]

See, for example, C. Kittel, Introduction to Solid State Physics, 2nd ed. (Wiley, New York, 1960).

Test Method E1461-01, “Standard test method for thermal diffusivity by the flash method,” in Annual Book of ASTM Standards (American Society for Testing Materials, Philadelphia, Pa., 2001), Vol. 14.02, pp. 1–13.

K. L. Schepler, M. D. Turner, P. A. Budni, “High-average-power nonlinear frequency conversion in AgGaSe2,” in Advanced Solid-State Lasers, G. Dubei, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 325–328.

J. A. Koski, “Improved data reduction methods for laser pulse diffusivity determination with the use of minicomputers,” in Proceedings of the Eighth Symposium on Thermophysical Properties, Vol. II, J. V. Sengers, ed. (American Institute of Physics, New York, 1981), pp. 94–103.

G. C. Catella, D. S. Burlage, J. D. Beasley, C. L. Marquardt, “Modeling and comparison with recent lensing experiments in AgGaSe2 and ZnGeP2,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion,” N. Peygambar-ian, H. Everitt, R. C. Eckardt, D. D. Lowenthal, eds., Proc. SPIE2145, 272–281 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Measured values of the thermal diffusivity β of AgGaSe2 along the a and c axes in the temperature range from ∼100 to 300 K: solid and dashed curves, fits of the data for the a and c axes, respectively, to Eq. (3).

Fig. 2
Fig. 2

Measured values of the specific heat Cp of AgGaSe2 in the temperature range from ∼100 to 300 K: circles, data points; curve, values from the Debye model with θD = 380 K.

Fig. 3
Fig. 3

Measured values of the thermal conductivity κ of AgGaSe2 along the a and c axes in the temperature range from ∼100 to 300 K: solid and dashed curves, 1/T fits of the data for the a and c axes represented by circles and triangles, respectively, to Eq. (7).

Fig. 4
Fig. 4

Measured values of the coefficient of thermal expansion α of AgGaSe2 along the a and c axes in the temperature range from 300 to 100 K: circles and squares, data points for the a and c axes, respectively; solid curves, third-order polynomial fits to the data; dashed curves, polynomial fits for the data obtained with x-ray measurements in Ref. 16.

Fig. 5
Fig. 5

Measured values of dno/dT and dnE/dT of AgGaSe2 at 295 and 100 K in the spectral range from 4.0 to 12.4 µm: circles and squares, data for dno/dT and dnE/dT, respectively; curves, linear fits to the data.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

β = Λ u ,
n = 1 exp ( θ D / b T ) 1 .
β = β 0 exp ( θ D / b T ) 1 exp ( θ D / b T 0 ) 1 ,
β = 1.38 L 2 π 2 t 1 / 2 ,
C υ = ( 9 n N A k B M ) ( T θ D ) 3 0 x m x 4 e x ( e x 1 ) 2 d x ,
κ = ρ β C p ,
κ ( T ) = A + β T ,
α ( T ) = M 0 + M 1 T + M 2 T 2 + M 3 T 3 ,
M 0 = 2.4703 , M 1 = 0.10012 , M 2 = 0.0003391 , M 3 = 0.00000044817 .
M 0 = 10.676 , M 1 = 0.015121 , M 2 = 0.00010473 , M 3 = 0.00000019982 .
d n d T = ( n + ν d n d ν ν ) ( Δ ν Δ T ) n α ,
FOM = κ γ d n d T ,

Metrics