Abstract

Ultracompact concentrators and illuminators that approach the thermodynamic limit to optical performance can be realized with purely imaging strategies. We explore two-stage reflector systems where each optical surface is tailored to eliminate one order of aberration—the so-called aplanatic designs. The contours are monotonic functions that can be expressed analytically, which are important for the facilitation of optimization studies and practical fabrication. The radiative performance of the devices presented is competitive with, and even superior to, that of high-flux nonimaging systems. Sample results of practical value in solar concentration and light collimation are presented for systems that cover a wide range of numerical aperture.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, San Diego, Calif., 1989).
  2. H. Ries, J. M. Gordon, “Double tailored imaging concentrators,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, eds., Proc. SPIE3781, 129–134 (1999).
  3. C. E. Mauk, H. W. Prengle, C. H. S. Eddy, “Optical and thermal analysis of a Cassegrainian solar concentrator,” Sol. Energy 23, 157–167 (1979).
    [CrossRef]
  4. D. Feuermann, J. M. Gordon, H. Ries, “High-flux solar concentration with imaging designs,” Sol. Energy 65, 83–89 (1999).
    [CrossRef]
  5. D. Feuermann, J. M. Gordon, “Solar fiber-optic mini dishes: a new approach to the efficient collection of sunlight,” Sol. Energy 65, 159–170 (1999).
    [CrossRef]
  6. D. Feuermann, J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Sol. Energy 70, 423–430 (2001).
    [CrossRef]
  7. J. M. Gordon, D. Feuermann, M. Huleihil, “Laser surgical effects with concentrated solar radiation,” Appl. Phys. Lett. 81, 2653–2655 (2002).
    [CrossRef]
  8. J. M. Gordon, D. Feuermann, M. Huleihil, E. A. Katz, “New optical systems for the solar generation of nanomaterials,” in Nonimaging Optics: Maximum Efficiency Light Transfer VII, R. Winston, ed., Proc. SPIE5185, 99–108 (2003).
  9. J. M. Gordon, E. A. Katz, D. Feuermann, M. Huleihil, “Toward high-flux photovoltaic concentration,” Appl. Phys. Lett. 84, 3642–3644 (2004).
    [CrossRef]
  10. D. Feuermann, J. M. Gordon, H. Ries, K. C. Ng, H. T. Chua, M. Altura, “System and apparatus for photothermal and photochemical medical treatments with incoherent light,” U.S. Patent and Patent Cooperation Treaty, International Publication W02004/1105576A1 (2004).
  11. A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18, 93–111 (1976).
    [CrossRef]
  12. D. Lynden-Bell, “Exact optics: a unification of optical telescope design,” Mon. Not. R. Astron. Soc. 334, 787–796 (2002).
    [CrossRef]
  13. R. V. Willstrop, D. Lynden-Bell, “Exact optics. II. Exploration of designs on- and off-axis,” Mon. Not. R. Astron. Soc. 342, 33–49 (2003).
    [CrossRef]
  14. OptiCAD, Version 9.1 (OptiCAD Corp., Santa Fe, N.M., 2003).
  15. D. Feuermann, J. M. Gordon, M. Huleihil, “Solar fiberoptic mini-dish concentrators: first experimental results and field experience,” Sol. Energy 72, 459–472 (2002),Erratum, 73, 73 (2002).
    [CrossRef]
  16. S. Horne, G. Conley, “Concentrating photovoltaic system: an engineering overview,” H2GO Corp. Internal Technical Report (H2GO Corp., Saratoga, Calif., 2004).
  17. J. M. Gordon, P. Kashin, A. Rabl, “Nonimaging reflectors for efficient uniform illumination,” Appl. Opt. 31, 6027–6035 (1992).
    [CrossRef] [PubMed]
  18. K. Araki, M. Kondo, H. Uozumi, Y. Kemmoku, T. Egami, M. Hiramatsu, Y. Miyazaki, N. J. Ekins-Daukes, M. Yamaguchi, “A 28% efficient, 400-sun concentrator module and its packaging technologies,” presented at the International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, NREL/CD-520-35349, Alice Springs, Australia, 10–14 November, 2003.
  19. H. Ries, J. M. Gordon, M. Lasken, “High-flux photovoltaic concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
    [CrossRef]
  20. R. Leutz, F. Ling, H. Ries, “Secondary optics for solar concentrators,” presented at the International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, NREL/CD-520-35349, Alice Springs, Australia, 10–14 November 2003.
  21. J. M. Gordon, D. Feuermann, “Tailored imaging optics for concentration and illumination at the thermodynamic limit,” in Nonimaging Optics and Efficient Illumination Systems, R. Winston, J. R. Koshel, eds., Proc. SPIE5529, 130–139 (2004).
    [CrossRef]

2004 (1)

J. M. Gordon, E. A. Katz, D. Feuermann, M. Huleihil, “Toward high-flux photovoltaic concentration,” Appl. Phys. Lett. 84, 3642–3644 (2004).
[CrossRef]

2003 (1)

R. V. Willstrop, D. Lynden-Bell, “Exact optics. II. Exploration of designs on- and off-axis,” Mon. Not. R. Astron. Soc. 342, 33–49 (2003).
[CrossRef]

2002 (3)

D. Feuermann, J. M. Gordon, M. Huleihil, “Solar fiberoptic mini-dish concentrators: first experimental results and field experience,” Sol. Energy 72, 459–472 (2002),Erratum, 73, 73 (2002).
[CrossRef]

J. M. Gordon, D. Feuermann, M. Huleihil, “Laser surgical effects with concentrated solar radiation,” Appl. Phys. Lett. 81, 2653–2655 (2002).
[CrossRef]

D. Lynden-Bell, “Exact optics: a unification of optical telescope design,” Mon. Not. R. Astron. Soc. 334, 787–796 (2002).
[CrossRef]

2001 (1)

D. Feuermann, J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Sol. Energy 70, 423–430 (2001).
[CrossRef]

1999 (2)

D. Feuermann, J. M. Gordon, H. Ries, “High-flux solar concentration with imaging designs,” Sol. Energy 65, 83–89 (1999).
[CrossRef]

D. Feuermann, J. M. Gordon, “Solar fiber-optic mini dishes: a new approach to the efficient collection of sunlight,” Sol. Energy 65, 159–170 (1999).
[CrossRef]

1997 (1)

H. Ries, J. M. Gordon, M. Lasken, “High-flux photovoltaic concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[CrossRef]

1992 (1)

1979 (1)

C. E. Mauk, H. W. Prengle, C. H. S. Eddy, “Optical and thermal analysis of a Cassegrainian solar concentrator,” Sol. Energy 23, 157–167 (1979).
[CrossRef]

1976 (1)

A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18, 93–111 (1976).
[CrossRef]

Altura, M.

D. Feuermann, J. M. Gordon, H. Ries, K. C. Ng, H. T. Chua, M. Altura, “System and apparatus for photothermal and photochemical medical treatments with incoherent light,” U.S. Patent and Patent Cooperation Treaty, International Publication W02004/1105576A1 (2004).

Araki, K.

K. Araki, M. Kondo, H. Uozumi, Y. Kemmoku, T. Egami, M. Hiramatsu, Y. Miyazaki, N. J. Ekins-Daukes, M. Yamaguchi, “A 28% efficient, 400-sun concentrator module and its packaging technologies,” presented at the International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, NREL/CD-520-35349, Alice Springs, Australia, 10–14 November, 2003.

Chua, H. T.

D. Feuermann, J. M. Gordon, H. Ries, K. C. Ng, H. T. Chua, M. Altura, “System and apparatus for photothermal and photochemical medical treatments with incoherent light,” U.S. Patent and Patent Cooperation Treaty, International Publication W02004/1105576A1 (2004).

Conley, G.

S. Horne, G. Conley, “Concentrating photovoltaic system: an engineering overview,” H2GO Corp. Internal Technical Report (H2GO Corp., Saratoga, Calif., 2004).

Eddy, C. H. S.

C. E. Mauk, H. W. Prengle, C. H. S. Eddy, “Optical and thermal analysis of a Cassegrainian solar concentrator,” Sol. Energy 23, 157–167 (1979).
[CrossRef]

Egami, T.

K. Araki, M. Kondo, H. Uozumi, Y. Kemmoku, T. Egami, M. Hiramatsu, Y. Miyazaki, N. J. Ekins-Daukes, M. Yamaguchi, “A 28% efficient, 400-sun concentrator module and its packaging technologies,” presented at the International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, NREL/CD-520-35349, Alice Springs, Australia, 10–14 November, 2003.

Ekins-Daukes, N. J.

K. Araki, M. Kondo, H. Uozumi, Y. Kemmoku, T. Egami, M. Hiramatsu, Y. Miyazaki, N. J. Ekins-Daukes, M. Yamaguchi, “A 28% efficient, 400-sun concentrator module and its packaging technologies,” presented at the International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, NREL/CD-520-35349, Alice Springs, Australia, 10–14 November, 2003.

Feuermann, D.

J. M. Gordon, E. A. Katz, D. Feuermann, M. Huleihil, “Toward high-flux photovoltaic concentration,” Appl. Phys. Lett. 84, 3642–3644 (2004).
[CrossRef]

J. M. Gordon, D. Feuermann, M. Huleihil, “Laser surgical effects with concentrated solar radiation,” Appl. Phys. Lett. 81, 2653–2655 (2002).
[CrossRef]

D. Feuermann, J. M. Gordon, M. Huleihil, “Solar fiberoptic mini-dish concentrators: first experimental results and field experience,” Sol. Energy 72, 459–472 (2002),Erratum, 73, 73 (2002).
[CrossRef]

D. Feuermann, J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Sol. Energy 70, 423–430 (2001).
[CrossRef]

D. Feuermann, J. M. Gordon, “Solar fiber-optic mini dishes: a new approach to the efficient collection of sunlight,” Sol. Energy 65, 159–170 (1999).
[CrossRef]

D. Feuermann, J. M. Gordon, H. Ries, “High-flux solar concentration with imaging designs,” Sol. Energy 65, 83–89 (1999).
[CrossRef]

D. Feuermann, J. M. Gordon, H. Ries, K. C. Ng, H. T. Chua, M. Altura, “System and apparatus for photothermal and photochemical medical treatments with incoherent light,” U.S. Patent and Patent Cooperation Treaty, International Publication W02004/1105576A1 (2004).

J. M. Gordon, D. Feuermann, M. Huleihil, E. A. Katz, “New optical systems for the solar generation of nanomaterials,” in Nonimaging Optics: Maximum Efficiency Light Transfer VII, R. Winston, ed., Proc. SPIE5185, 99–108 (2003).

J. M. Gordon, D. Feuermann, “Tailored imaging optics for concentration and illumination at the thermodynamic limit,” in Nonimaging Optics and Efficient Illumination Systems, R. Winston, J. R. Koshel, eds., Proc. SPIE5529, 130–139 (2004).
[CrossRef]

Gordon, J. M.

J. M. Gordon, E. A. Katz, D. Feuermann, M. Huleihil, “Toward high-flux photovoltaic concentration,” Appl. Phys. Lett. 84, 3642–3644 (2004).
[CrossRef]

J. M. Gordon, D. Feuermann, M. Huleihil, “Laser surgical effects with concentrated solar radiation,” Appl. Phys. Lett. 81, 2653–2655 (2002).
[CrossRef]

D. Feuermann, J. M. Gordon, M. Huleihil, “Solar fiberoptic mini-dish concentrators: first experimental results and field experience,” Sol. Energy 72, 459–472 (2002),Erratum, 73, 73 (2002).
[CrossRef]

D. Feuermann, J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Sol. Energy 70, 423–430 (2001).
[CrossRef]

D. Feuermann, J. M. Gordon, “Solar fiber-optic mini dishes: a new approach to the efficient collection of sunlight,” Sol. Energy 65, 159–170 (1999).
[CrossRef]

D. Feuermann, J. M. Gordon, H. Ries, “High-flux solar concentration with imaging designs,” Sol. Energy 65, 83–89 (1999).
[CrossRef]

H. Ries, J. M. Gordon, M. Lasken, “High-flux photovoltaic concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[CrossRef]

J. M. Gordon, P. Kashin, A. Rabl, “Nonimaging reflectors for efficient uniform illumination,” Appl. Opt. 31, 6027–6035 (1992).
[CrossRef] [PubMed]

J. M. Gordon, D. Feuermann, “Tailored imaging optics for concentration and illumination at the thermodynamic limit,” in Nonimaging Optics and Efficient Illumination Systems, R. Winston, J. R. Koshel, eds., Proc. SPIE5529, 130–139 (2004).
[CrossRef]

H. Ries, J. M. Gordon, “Double tailored imaging concentrators,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, eds., Proc. SPIE3781, 129–134 (1999).

D. Feuermann, J. M. Gordon, H. Ries, K. C. Ng, H. T. Chua, M. Altura, “System and apparatus for photothermal and photochemical medical treatments with incoherent light,” U.S. Patent and Patent Cooperation Treaty, International Publication W02004/1105576A1 (2004).

J. M. Gordon, D. Feuermann, M. Huleihil, E. A. Katz, “New optical systems for the solar generation of nanomaterials,” in Nonimaging Optics: Maximum Efficiency Light Transfer VII, R. Winston, ed., Proc. SPIE5185, 99–108 (2003).

Hiramatsu, M.

K. Araki, M. Kondo, H. Uozumi, Y. Kemmoku, T. Egami, M. Hiramatsu, Y. Miyazaki, N. J. Ekins-Daukes, M. Yamaguchi, “A 28% efficient, 400-sun concentrator module and its packaging technologies,” presented at the International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, NREL/CD-520-35349, Alice Springs, Australia, 10–14 November, 2003.

Horne, S.

S. Horne, G. Conley, “Concentrating photovoltaic system: an engineering overview,” H2GO Corp. Internal Technical Report (H2GO Corp., Saratoga, Calif., 2004).

Huleihil, M.

J. M. Gordon, E. A. Katz, D. Feuermann, M. Huleihil, “Toward high-flux photovoltaic concentration,” Appl. Phys. Lett. 84, 3642–3644 (2004).
[CrossRef]

J. M. Gordon, D. Feuermann, M. Huleihil, “Laser surgical effects with concentrated solar radiation,” Appl. Phys. Lett. 81, 2653–2655 (2002).
[CrossRef]

D. Feuermann, J. M. Gordon, M. Huleihil, “Solar fiberoptic mini-dish concentrators: first experimental results and field experience,” Sol. Energy 72, 459–472 (2002),Erratum, 73, 73 (2002).
[CrossRef]

J. M. Gordon, D. Feuermann, M. Huleihil, E. A. Katz, “New optical systems for the solar generation of nanomaterials,” in Nonimaging Optics: Maximum Efficiency Light Transfer VII, R. Winston, ed., Proc. SPIE5185, 99–108 (2003).

Kashin, P.

Katz, E. A.

J. M. Gordon, E. A. Katz, D. Feuermann, M. Huleihil, “Toward high-flux photovoltaic concentration,” Appl. Phys. Lett. 84, 3642–3644 (2004).
[CrossRef]

J. M. Gordon, D. Feuermann, M. Huleihil, E. A. Katz, “New optical systems for the solar generation of nanomaterials,” in Nonimaging Optics: Maximum Efficiency Light Transfer VII, R. Winston, ed., Proc. SPIE5185, 99–108 (2003).

Kemmoku, Y.

K. Araki, M. Kondo, H. Uozumi, Y. Kemmoku, T. Egami, M. Hiramatsu, Y. Miyazaki, N. J. Ekins-Daukes, M. Yamaguchi, “A 28% efficient, 400-sun concentrator module and its packaging technologies,” presented at the International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, NREL/CD-520-35349, Alice Springs, Australia, 10–14 November, 2003.

Kondo, M.

K. Araki, M. Kondo, H. Uozumi, Y. Kemmoku, T. Egami, M. Hiramatsu, Y. Miyazaki, N. J. Ekins-Daukes, M. Yamaguchi, “A 28% efficient, 400-sun concentrator module and its packaging technologies,” presented at the International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, NREL/CD-520-35349, Alice Springs, Australia, 10–14 November, 2003.

Lasken, M.

H. Ries, J. M. Gordon, M. Lasken, “High-flux photovoltaic concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[CrossRef]

Leutz, R.

R. Leutz, F. Ling, H. Ries, “Secondary optics for solar concentrators,” presented at the International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, NREL/CD-520-35349, Alice Springs, Australia, 10–14 November 2003.

Ling, F.

R. Leutz, F. Ling, H. Ries, “Secondary optics for solar concentrators,” presented at the International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, NREL/CD-520-35349, Alice Springs, Australia, 10–14 November 2003.

Lynden-Bell, D.

R. V. Willstrop, D. Lynden-Bell, “Exact optics. II. Exploration of designs on- and off-axis,” Mon. Not. R. Astron. Soc. 342, 33–49 (2003).
[CrossRef]

D. Lynden-Bell, “Exact optics: a unification of optical telescope design,” Mon. Not. R. Astron. Soc. 334, 787–796 (2002).
[CrossRef]

Mauk, C. E.

C. E. Mauk, H. W. Prengle, C. H. S. Eddy, “Optical and thermal analysis of a Cassegrainian solar concentrator,” Sol. Energy 23, 157–167 (1979).
[CrossRef]

Miyazaki, Y.

K. Araki, M. Kondo, H. Uozumi, Y. Kemmoku, T. Egami, M. Hiramatsu, Y. Miyazaki, N. J. Ekins-Daukes, M. Yamaguchi, “A 28% efficient, 400-sun concentrator module and its packaging technologies,” presented at the International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, NREL/CD-520-35349, Alice Springs, Australia, 10–14 November, 2003.

Ng, K. C.

D. Feuermann, J. M. Gordon, H. Ries, K. C. Ng, H. T. Chua, M. Altura, “System and apparatus for photothermal and photochemical medical treatments with incoherent light,” U.S. Patent and Patent Cooperation Treaty, International Publication W02004/1105576A1 (2004).

Prengle, H. W.

C. E. Mauk, H. W. Prengle, C. H. S. Eddy, “Optical and thermal analysis of a Cassegrainian solar concentrator,” Sol. Energy 23, 157–167 (1979).
[CrossRef]

Rabl, A.

Ries, H.

D. Feuermann, J. M. Gordon, H. Ries, “High-flux solar concentration with imaging designs,” Sol. Energy 65, 83–89 (1999).
[CrossRef]

H. Ries, J. M. Gordon, M. Lasken, “High-flux photovoltaic concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[CrossRef]

R. Leutz, F. Ling, H. Ries, “Secondary optics for solar concentrators,” presented at the International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, NREL/CD-520-35349, Alice Springs, Australia, 10–14 November 2003.

H. Ries, J. M. Gordon, “Double tailored imaging concentrators,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, eds., Proc. SPIE3781, 129–134 (1999).

D. Feuermann, J. M. Gordon, H. Ries, K. C. Ng, H. T. Chua, M. Altura, “System and apparatus for photothermal and photochemical medical treatments with incoherent light,” U.S. Patent and Patent Cooperation Treaty, International Publication W02004/1105576A1 (2004).

Uozumi, H.

K. Araki, M. Kondo, H. Uozumi, Y. Kemmoku, T. Egami, M. Hiramatsu, Y. Miyazaki, N. J. Ekins-Daukes, M. Yamaguchi, “A 28% efficient, 400-sun concentrator module and its packaging technologies,” presented at the International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, NREL/CD-520-35349, Alice Springs, Australia, 10–14 November, 2003.

Welford, W. T.

W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, San Diego, Calif., 1989).

Willstrop, R. V.

R. V. Willstrop, D. Lynden-Bell, “Exact optics. II. Exploration of designs on- and off-axis,” Mon. Not. R. Astron. Soc. 342, 33–49 (2003).
[CrossRef]

Winston, R.

W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, San Diego, Calif., 1989).

Yamaguchi, M.

K. Araki, M. Kondo, H. Uozumi, Y. Kemmoku, T. Egami, M. Hiramatsu, Y. Miyazaki, N. J. Ekins-Daukes, M. Yamaguchi, “A 28% efficient, 400-sun concentrator module and its packaging technologies,” presented at the International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, NREL/CD-520-35349, Alice Springs, Australia, 10–14 November, 2003.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. M. Gordon, E. A. Katz, D. Feuermann, M. Huleihil, “Toward high-flux photovoltaic concentration,” Appl. Phys. Lett. 84, 3642–3644 (2004).
[CrossRef]

J. M. Gordon, D. Feuermann, M. Huleihil, “Laser surgical effects with concentrated solar radiation,” Appl. Phys. Lett. 81, 2653–2655 (2002).
[CrossRef]

Mon. Not. R. Astron. Soc. (2)

D. Lynden-Bell, “Exact optics: a unification of optical telescope design,” Mon. Not. R. Astron. Soc. 334, 787–796 (2002).
[CrossRef]

R. V. Willstrop, D. Lynden-Bell, “Exact optics. II. Exploration of designs on- and off-axis,” Mon. Not. R. Astron. Soc. 342, 33–49 (2003).
[CrossRef]

Sol. Energy (7)

D. Feuermann, J. M. Gordon, M. Huleihil, “Solar fiberoptic mini-dish concentrators: first experimental results and field experience,” Sol. Energy 72, 459–472 (2002),Erratum, 73, 73 (2002).
[CrossRef]

C. E. Mauk, H. W. Prengle, C. H. S. Eddy, “Optical and thermal analysis of a Cassegrainian solar concentrator,” Sol. Energy 23, 157–167 (1979).
[CrossRef]

D. Feuermann, J. M. Gordon, H. Ries, “High-flux solar concentration with imaging designs,” Sol. Energy 65, 83–89 (1999).
[CrossRef]

D. Feuermann, J. M. Gordon, “Solar fiber-optic mini dishes: a new approach to the efficient collection of sunlight,” Sol. Energy 65, 159–170 (1999).
[CrossRef]

D. Feuermann, J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Sol. Energy 70, 423–430 (2001).
[CrossRef]

H. Ries, J. M. Gordon, M. Lasken, “High-flux photovoltaic concentrators with kaleidoscope-based optical designs,” Sol. Energy 60, 11–16 (1997).
[CrossRef]

A. Rabl, “Comparison of solar concentrators,” Sol. Energy 18, 93–111 (1976).
[CrossRef]

Other (9)

R. Leutz, F. Ling, H. Ries, “Secondary optics for solar concentrators,” presented at the International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, NREL/CD-520-35349, Alice Springs, Australia, 10–14 November 2003.

J. M. Gordon, D. Feuermann, “Tailored imaging optics for concentration and illumination at the thermodynamic limit,” in Nonimaging Optics and Efficient Illumination Systems, R. Winston, J. R. Koshel, eds., Proc. SPIE5529, 130–139 (2004).
[CrossRef]

J. M. Gordon, D. Feuermann, M. Huleihil, E. A. Katz, “New optical systems for the solar generation of nanomaterials,” in Nonimaging Optics: Maximum Efficiency Light Transfer VII, R. Winston, ed., Proc. SPIE5185, 99–108 (2003).

W. T. Welford, R. Winston, High Collection Nonimaging Optics (Academic, San Diego, Calif., 1989).

H. Ries, J. M. Gordon, “Double tailored imaging concentrators,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, eds., Proc. SPIE3781, 129–134 (1999).

S. Horne, G. Conley, “Concentrating photovoltaic system: an engineering overview,” H2GO Corp. Internal Technical Report (H2GO Corp., Saratoga, Calif., 2004).

K. Araki, M. Kondo, H. Uozumi, Y. Kemmoku, T. Egami, M. Hiramatsu, Y. Miyazaki, N. J. Ekins-Daukes, M. Yamaguchi, “A 28% efficient, 400-sun concentrator module and its packaging technologies,” presented at the International Solar Concentrator Conference for the Generation of Electricity or Hydrogen, NREL/CD-520-35349, Alice Springs, Australia, 10–14 November, 2003.

OptiCAD, Version 9.1 (OptiCAD Corp., Santa Fe, N.M., 2003).

D. Feuermann, J. M. Gordon, H. Ries, K. C. Ng, H. T. Chua, M. Altura, “System and apparatus for photothermal and photochemical medical treatments with incoherent light,” U.S. Patent and Patent Cooperation Treaty, International Publication W02004/1105576A1 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of concentrator design. Mirror contours are tailored such that all paraxial rays are focused and the Abbe sine condition is satisfied. Irradiation from the actual extended far-field source has NA1 = sin(θ), to be concentrated onto an extended, upward-facing disk, depicted here as the entrance to an equidiameter light guide. In illumination mode, light emitted over NA2 from a point focus would emerge perfectly collimated; but the actual illuminator has an extended source and emits over NA1.

Fig. 2
Fig. 2

Design for converging complementary devices (here with NA2 = 0.5), in analogy to Fig. 1.

Fig. 3
Fig. 3

Tailored imaging concentrator designed for NA2 = 0.50. The absorber is sited in the focal plane (the solid dot indicates the focus). Flux maps are plotted for a range of NA1 values.

Fig. 4
Fig. 4

Sample tailored imaging concentrators and their efficiency concentration curves.

Fig. 5
Fig. 5

Flux maps when the design of Fig. 4(b) is deployed as a collimator. Intensity I is scaled such that ∫I(θ)d[sin2(θ)] equals the efficiency.

Fig. 6
Fig. 6

Illustration of collimation performance. The actual source has NA2 = 0.46, but the illuminator is slightly overdesigned for NA2 = 0.50. The intended collimation is NA1 = 0.010. The upper and lower drawings pertain to near- and far-field targets, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

C max = ( NA 2 / NA 1 ) 2 .
d min = D ( NA 1 / NA 2 ) ,
L 0 + L 1 + L 2 = constant ,
R = ( constant ) sin ( ϕ ) ,
R p = 2 T 1 + T 2 , X p = s 1 1 + T 2 + [ s ( 1 s ) T 2 ] [ 1 K g ( T ) ] s ( 1 + T 2 ) 2 , R s = 2 sKTg ( T ) s ( 1 s ) T 2 + K T 2 g ( T ) , X s = s K ( 1 T 2 ) g ( T ) s ( 1 s ) T 2 + K T 2 g ( T ) ,
T = tan ( ϕ / 2 ) , g ( T ) = | 1 ( 1 s ) T 2 s | s 1 s .

Metrics