Abstract

The fluorescence spectrum measured from a fluorophore in tissue is affected by the absorption and scattering properties of the tissue, as well as by the measurement geometry. We analyze this effect with Monte Carlo simulations and by measurements on phantoms. The spectral changes can be used to estimate the depth of a fluorescent lesion embedded in the tissue by measurement of the fluorescence signal in different wavelength bands. By taking the ratio between the signals at two wavelengths, we show that it is possible to determine the depth of the lesion. Simulations were performed and validated by measurements on a phantom in the wavelength range 815–930 nm. The depth of a fluorescing layer could be determined with 0.6-mm accuracy down to at least a depth of 10 mm. Monte Carlo simulations were also performed for different tissue types of various composition. The results indicate that depth estimation of a lesion should be possible with 2–3-mm accuracy, with no assumptions made about the optical properties, for a wide range of tissues.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, J. Ripoll, R. Weissleder, “Would near-infrared fluorescence signals propagate through large human organs for clinical studies?” Opt. Lett. 27, 333–335 (2002).
    [CrossRef]
  2. V. Ntziachristos, C.-H. Tung, C. Bremer, R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
    [CrossRef] [PubMed]
  3. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
    [CrossRef] [PubMed]
  4. A. Eidsath, V. Chernomordik, A. H. Gandjbakhche, P. Smith, A. Russo, “Three-dimensional localization of fluorescent masses deeply embedded in tissue,” Phys. Med. Biol. 47, 4079–4092 (2002).
    [CrossRef] [PubMed]
  5. T. J. Farrell, R. P. Hawkes, M. S. Patterson, B. C. Wilson, “Modeling of photosensitizer fluorescence emission and photobleaching for photodynamic therapy dosimetry,” Appl. Opt. 37, 7168–7183 (1998).
    [CrossRef]
  6. T. Johansson, M. S. Thompson, M. Stenberg, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Feasibility study of a novel system for combined light dosimetry and interstitial photodynamic treatment of massive tumors,” Appl. Opt. 41, 1462–1468 (2002).
    [CrossRef] [PubMed]
  7. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
    [CrossRef]
  8. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997).
    [CrossRef] [PubMed]
  9. J. Chang, H. L. Graber, R. L. Barbour, “Imaging of fluorescence in highly scattering media,” IEEE Trans. Biomed. Eng. 44, 810–822 (1997).
    [CrossRef] [PubMed]
  10. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).
  11. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2004).
    [CrossRef]
  12. A. D. Klose, A. H. Hielscher, “Fluorescence tomography with simulated data based on the equation of radiative transfer,” Opt. Lett. 28, 1019–1021 (2003).
    [CrossRef] [PubMed]
  13. D. Stasic, T. J. Farrell, M. S. Patterson, “The use of spatially-resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions,” Phys. Med. Biol. 48, 3459–3474 (2003).
    [CrossRef] [PubMed]
  14. M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
    [CrossRef] [PubMed]
  15. S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, B. Gélébart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998).
    [CrossRef]
  16. C. Eker, “Optical characterization of tissue for medical diagnostics,” Ph.D. dissertation (Lund Institute of Technology, Lund, Sweden, 1999).
  17. M. G. Muller, I. Georgakoudi, Q. Zhang, J. Wu, M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40, 4633–4646 (2001).
    [CrossRef]
  18. Q. Liu, C. Zhu, N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
    [CrossRef] [PubMed]
  19. T. J. Pfefer, L. S. Matchette, A. M. Ross, M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett. 28, 120–122 (2003).
    [CrossRef] [PubMed]
  20. U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
    [CrossRef] [PubMed]
  21. J. Swartling, A. Pifferi, A. M. K. Enejder, S. Andersson-Engels, “Accelerated Monte Carlo model to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A 20, 714–727 (2003).
    [CrossRef]
  22. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
    [CrossRef] [PubMed]
  23. J. Swartling, J. S. Dam, S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612–4620 (2003).
    [CrossRef] [PubMed]
  24. S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).
    [CrossRef] [PubMed]
  25. C. af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, S. Svanberg, “Compact medical fluorosensor for minimally invasive tissue characterisation,” Rev. Sci. Instrum., submitted for publication.
  26. C. Bremer, V. Ntziachristos, R. Weissleder, “Optical-based molecular imaging: contrast agents and potential medical applications,” Eur. J. Radiol. 13, 231–243 (2003).

2004 (2)

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2004).
[CrossRef]

2003 (8)

A. D. Klose, A. H. Hielscher, “Fluorescence tomography with simulated data based on the equation of radiative transfer,” Opt. Lett. 28, 1019–1021 (2003).
[CrossRef] [PubMed]

J. Swartling, J. S. Dam, S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612–4620 (2003).
[CrossRef] [PubMed]

T. J. Pfefer, L. S. Matchette, A. M. Ross, M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett. 28, 120–122 (2003).
[CrossRef] [PubMed]

J. Swartling, A. Pifferi, A. M. K. Enejder, S. Andersson-Engels, “Accelerated Monte Carlo model to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A 20, 714–727 (2003).
[CrossRef]

C. Bremer, V. Ntziachristos, R. Weissleder, “Optical-based molecular imaging: contrast agents and potential medical applications,” Eur. J. Radiol. 13, 231–243 (2003).

D. Stasic, T. J. Farrell, M. S. Patterson, “The use of spatially-resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions,” Phys. Med. Biol. 48, 3459–3474 (2003).
[CrossRef] [PubMed]

Q. Liu, C. Zhu, N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[CrossRef] [PubMed]

U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
[CrossRef] [PubMed]

2002 (5)

V. Ntziachristos, C.-H. Tung, C. Bremer, R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

A. Eidsath, V. Chernomordik, A. H. Gandjbakhche, P. Smith, A. Russo, “Three-dimensional localization of fluorescent masses deeply embedded in tissue,” Phys. Med. Biol. 47, 4079–4092 (2002).
[CrossRef] [PubMed]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

V. Ntziachristos, J. Ripoll, R. Weissleder, “Would near-infrared fluorescence signals propagate through large human organs for clinical studies?” Opt. Lett. 27, 333–335 (2002).
[CrossRef]

T. Johansson, M. S. Thompson, M. Stenberg, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Feasibility study of a novel system for combined light dosimetry and interstitial photodynamic treatment of massive tumors,” Appl. Opt. 41, 1462–1468 (2002).
[CrossRef] [PubMed]

2001 (1)

1999 (1)

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

1998 (2)

1997 (2)

1996 (1)

1993 (1)

1989 (1)

af Klinteberg, C.

T. Johansson, M. S. Thompson, M. Stenberg, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Feasibility study of a novel system for combined light dosimetry and interstitial photodynamic treatment of massive tumors,” Appl. Opt. 41, 1462–1468 (2002).
[CrossRef] [PubMed]

C. af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, S. Svanberg, “Compact medical fluorosensor for minimally invasive tissue characterisation,” Rev. Sci. Instrum., submitted for publication.

Andersson-Engels, S.

Andreasson, M.

C. af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, S. Svanberg, “Compact medical fluorosensor for minimally invasive tissue characterisation,” Rev. Sci. Instrum., submitted for publication.

Avrillier, S.

Barbour, R. L.

J. Chang, H. L. Graber, R. L. Barbour, “Imaging of fluorescence in highly scattering media,” IEEE Trans. Biomed. Eng. 44, 810–822 (1997).
[CrossRef] [PubMed]

Bassi, A.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
[CrossRef] [PubMed]

Boas, D. A.

Bouman, C. A.

Bremer, C.

C. Bremer, V. Ntziachristos, R. Weissleder, “Optical-based molecular imaging: contrast agents and potential medical applications,” Eur. J. Radiol. 13, 231–243 (2003).

V. Ntziachristos, C.-H. Tung, C. Bremer, R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

Chance, B.

Chang, J.

J. Chang, H. L. Graber, R. L. Barbour, “Imaging of fluorescence in highly scattering media,” IEEE Trans. Biomed. Eng. 44, 810–822 (1997).
[CrossRef] [PubMed]

Chen, A. U.

Chernomordik, V.

A. Eidsath, V. Chernomordik, A. H. Gandjbakhche, P. Smith, A. Russo, “Three-dimensional localization of fluorescent masses deeply embedded in tissue,” Phys. Med. Biol. 47, 4079–4092 (2002).
[CrossRef] [PubMed]

Chikoidze, E.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
[CrossRef] [PubMed]

Cornell, K. K.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Cubeddu, R.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
[CrossRef] [PubMed]

Dam, J. S.

Ediger, M. N.

Eidsath, A.

A. Eidsath, V. Chernomordik, A. H. Gandjbakhche, P. Smith, A. Russo, “Three-dimensional localization of fluorescent masses deeply embedded in tissue,” Phys. Med. Biol. 47, 4079–4092 (2002).
[CrossRef] [PubMed]

Eker, C.

C. Eker, “Optical characterization of tissue for medical diagnostics,” Ph.D. dissertation (Lund Institute of Technology, Lund, Sweden, 1999).

Enejder, A. M. K.

Eppstein, M. J.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

Ettori, D.

Farrell, T. J.

D. Stasic, T. J. Farrell, M. S. Patterson, “The use of spatially-resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions,” Phys. Med. Biol. 48, 3459–3474 (2003).
[CrossRef] [PubMed]

T. J. Farrell, R. P. Hawkes, M. S. Patterson, B. C. Wilson, “Modeling of photosensitizer fluorescence emission and photobleaching for photodynamic therapy dosimetry,” Appl. Opt. 37, 7168–7183 (1998).
[CrossRef]

Feld, M. S.

Gandjbakhche, A. H.

A. Eidsath, V. Chernomordik, A. H. Gandjbakhche, P. Smith, A. Russo, “Three-dimensional localization of fluorescent masses deeply embedded in tissue,” Phys. Med. Biol. 47, 4079–4092 (2002).
[CrossRef] [PubMed]

Gélébart, B.

Georgakoudi, I.

Godavarty, A.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

Graber, H. L.

J. Chang, H. L. Graber, R. L. Barbour, “Imaging of fluorescence in highly scattering media,” IEEE Trans. Biomed. Eng. 44, 810–822 (1997).
[CrossRef] [PubMed]

Hawkes, R. P.

Hawrysz, D. J.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

Hielscher, A. H.

Jacques, S. L.

Johansson, T.

Keijzer, M.

Klose, A. D.

Li, X. D.

Liu, Q.

Q. Liu, C. Zhu, N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[CrossRef] [PubMed]

Matchette, L. S.

Mayer, R. H.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Millane, R. P.

Milstein, A. B.

Muller, M. G.

Ntziachristos, V.

C. Bremer, V. Ntziachristos, R. Weissleder, “Optical-based molecular imaging: contrast agents and potential medical applications,” Eur. J. Radiol. 13, 231–243 (2003).

V. Ntziachristos, J. Ripoll, R. Weissleder, “Would near-infrared fluorescence signals propagate through large human organs for clinical studies?” Opt. Lett. 27, 333–335 (2002).
[CrossRef]

V. Ntziachristos, C.-H. Tung, C. Bremer, R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

O’Leary, M. A.

Oh, S.

Paithankar, D. Y.

Patterson, M. S.

Pfefer, T. J.

Pifferi, A.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
[CrossRef] [PubMed]

J. Swartling, A. Pifferi, A. M. K. Enejder, S. Andersson-Engels, “Accelerated Monte Carlo model to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A 20, 714–727 (2003).
[CrossRef]

Pogue, B. W.

Prahl, S. A.

Ramanujam, N.

Q. Liu, C. Zhu, N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[CrossRef] [PubMed]

Reynolds, J. S.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Richards-Kortum, R. R.

Ripoll, J.

Ross, A. M.

Russo, A.

A. Eidsath, V. Chernomordik, A. H. Gandjbakhche, P. Smith, A. Russo, “Three-dimensional localization of fluorescent masses deeply embedded in tissue,” Phys. Med. Biol. 47, 4079–4092 (2002).
[CrossRef] [PubMed]

Sandström, O.

C. af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, S. Svanberg, “Compact medical fluorosensor for minimally invasive tissue characterisation,” Rev. Sci. Instrum., submitted for publication.

Sevick-Muraca, E. M.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997).
[CrossRef] [PubMed]

Smith, P.

A. Eidsath, V. Chernomordik, A. H. Gandjbakhche, P. Smith, A. Russo, “Three-dimensional localization of fluorescent masses deeply embedded in tissue,” Phys. Med. Biol. 47, 4079–4092 (2002).
[CrossRef] [PubMed]

Snyder, P. W.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Stasic, D.

D. Stasic, T. J. Farrell, M. S. Patterson, “The use of spatially-resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions,” Phys. Med. Biol. 48, 3459–3474 (2003).
[CrossRef] [PubMed]

Stenberg, M.

Svanberg, K.

Svanberg, S.

T. Johansson, M. S. Thompson, M. Stenberg, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Feasibility study of a novel system for combined light dosimetry and interstitial photodynamic treatment of massive tumors,” Appl. Opt. 41, 1462–1468 (2002).
[CrossRef] [PubMed]

C. af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, S. Svanberg, “Compact medical fluorosensor for minimally invasive tissue characterisation,” Rev. Sci. Instrum., submitted for publication.

Swartling, J.

Taroni, P.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
[CrossRef] [PubMed]

Thompson, A. B.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Thompson, M. S.

Tinet, E.

Torricelli, A.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
[CrossRef] [PubMed]

Troy, T. L.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Tualle, J. M.

Tung, C.-H.

V. Ntziachristos, C.-H. Tung, C. Bremer, R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

Utzinger, U.

U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
[CrossRef] [PubMed]

van Gemert, M. J. C.

Waters, D. J.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Webb, K. J.

Weissleder, R.

C. Bremer, V. Ntziachristos, R. Weissleder, “Optical-based molecular imaging: contrast agents and potential medical applications,” Eur. J. Radiol. 13, 231–243 (2003).

V. Ntziachristos, J. Ripoll, R. Weissleder, “Would near-infrared fluorescence signals propagate through large human organs for clinical studies?” Opt. Lett. 27, 333–335 (2002).
[CrossRef]

V. Ntziachristos, C.-H. Tung, C. Bremer, R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

Welch, A. J.

Wilson, B. C.

Wu, J.

Yodh, A. G.

Zhang, Q.

Zhu, C.

Q. Liu, C. Zhu, N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[CrossRef] [PubMed]

Appl. Opt. (9)

M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989).
[CrossRef] [PubMed]

S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).
[CrossRef] [PubMed]

S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, B. Gélébart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998).
[CrossRef]

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997).
[CrossRef] [PubMed]

T. J. Farrell, R. P. Hawkes, M. S. Patterson, B. C. Wilson, “Modeling of photosensitizer fluorescence emission and photobleaching for photodynamic therapy dosimetry,” Appl. Opt. 37, 7168–7183 (1998).
[CrossRef]

M. G. Muller, I. Georgakoudi, Q. Zhang, J. Wu, M. S. Feld, “Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption,” Appl. Opt. 40, 4633–4646 (2001).
[CrossRef]

T. Johansson, M. S. Thompson, M. Stenberg, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Feasibility study of a novel system for combined light dosimetry and interstitial photodynamic treatment of massive tumors,” Appl. Opt. 41, 1462–1468 (2002).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2004).
[CrossRef]

J. Swartling, J. S. Dam, S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42, 4612–4620 (2003).
[CrossRef] [PubMed]

Eur. J. Radiol. (1)

C. Bremer, V. Ntziachristos, R. Weissleder, “Optical-based molecular imaging: contrast agents and potential medical applications,” Eur. J. Radiol. 13, 231–243 (2003).

IEEE Trans. Biomed. Eng. (1)

J. Chang, H. L. Graber, R. L. Barbour, “Imaging of fluorescence in highly scattering media,” IEEE Trans. Biomed. Eng. 44, 810–822 (1997).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

Q. Liu, C. Zhu, N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt. 8, 223–236 (2003).
[CrossRef] [PubMed]

U. Utzinger, R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003).
[CrossRef] [PubMed]

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt. 9, 1143–1151 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Med. (1)

V. Ntziachristos, C.-H. Tung, C. Bremer, R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

Opt. Lett. (4)

Photochem. Photobiol. (1)

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

A. Eidsath, V. Chernomordik, A. H. Gandjbakhche, P. Smith, A. Russo, “Three-dimensional localization of fluorescent masses deeply embedded in tissue,” Phys. Med. Biol. 47, 4079–4092 (2002).
[CrossRef] [PubMed]

D. Stasic, T. J. Farrell, M. S. Patterson, “The use of spatially-resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions,” Phys. Med. Biol. 48, 3459–3474 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography,” Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

Other (2)

C. af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, S. Svanberg, “Compact medical fluorosensor for minimally invasive tissue characterisation,” Rev. Sci. Instrum., submitted for publication.

C. Eker, “Optical characterization of tissue for medical diagnostics,” Ph.D. dissertation (Lund Institute of Technology, Lund, Sweden, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical properties of six different types of breast tissue (from Pifferi et al.22). The absorption spectra represent fitted curves rather than actual measurement data. The reduced scattering spectra represent fits to a power law. Only the mean spectrum is shown for scattering to avoid cluttering in the graph. The error bar indicates the standard deviation.

Fig. 2
Fig. 2

Schematic picture of the Intralipid phantom. The thickness of the fluorescing layer was 1 mm.

Fig. 3
Fig. 3

Optical properties of the resin phantom measured with the integrating-sphere setup. Also shown is the intrinsic fluorescence spectrum (Fluo.) following excitation at 407 nm (arbitrary units).

Fig. 4
Fig. 4

Experimentally measured and calculated fluorescence spectra for the resin phantom. Results from different distances between the excitation spot and the detection fiber are shown: (a) 0.5 mm, (b) 1 mm, (c) 3 mm, and (d) 5 mm. Int., intensity; norm., normalized.

Fig. 5
Fig. 5

Optical properties of the Intralipid phantom, as determined by the integrating-sphere setup. Also shown is the intrinsic fluorescence spectrum (Fluo.) of IR140 following excitation at 780 nm (arbitrary units).

Fig. 6
Fig. 6

Measured (normalized) fluorescence spectra for different layer depths (2, 6, and 10 mm) with fluorescing IR140.

Fig. 7
Fig. 7

Ratio γ shown for λ1 = 886 nm and λ2 = 922 nm as a function of the depth d, normalized to the value for d = 2. Results from both the Intralipid phantom measurements and the Monte Carlo simulations are shown.

Fig. 8
Fig. 8

Plots showing dγ/dd as a function of λ1 and λ2. Only the values where γ > 1 are plotted. (a) Tissue type 1, water rich; (b) tissue type 6, lipid rich; (c) average of all six tissue types.

Fig. 9
Fig. 9

Values of the depth d predicted from the Monte Carlo simulations for each of the six different tissue types. In all six cases the same calibration was used. (a) Calibration based on the mean value dγ/dd = 0.063 mm−1 at (λ1, λ2) = (695, 935 nm). (b) Calibration based on the mean value dγ/dd = 0.043 mm−1 at (λ1, λ2) = (875, 935 nm).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ = Γ ( λ 1 ) Γ ( λ 2 ) ,

Metrics