Abstract

Near infrared (NIR) optical tomography is an imaging technique in which internal images of optical properties are reconstructed with the boundary measurements of light propagation through the medium. Recent advances in instrumentation and theory have led to the use of this method for the detection and characterization of tumors within the female breast tissue. Most image reconstruction approaches have used the diffusion approximation and have assumed that the refractive index of the breast is constant, with a bulk value of approximately 1.4. We have applied a previously reported modified diffusion approximation, in which the refractive index for different tissues can be modeled. The model was used to generate NIR data from a realistic breast geometry containing a localized anomaly. Using this simulated data, we have reconstructed optical images, both with and without correct knowledge of the refractive-index distribution to show that the modified diffusion approximation can accurately recover the anomaly given a priori knowledge of refractive index. But using a reconstruction algorithm without the use of correct a priori information regarding the refractive-index distribution is shown as recovering the anomaly but with a degraded quality, depending on the degree of refractive index mismatch. The results suggest that provided the refractive index of breast tissue is approximately 1.3–1.4, their exclusion will have minimal effect on the reconstructed images.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).
    [CrossRef] [PubMed]
  2. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
    [CrossRef]
  3. J. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. Delpy, S. Arridge, J. Meek, J. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
    [CrossRef] [PubMed]
  4. B. Chance, “Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status,” Acad. Radiol. 8, 209–210 (2001).
    [CrossRef] [PubMed]
  5. J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
    [CrossRef] [PubMed]
  6. A. Y. Bluestone, G. Abdoulaev, C. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical-tomography of hemodynamics in the human head,” Opt. Express9, 272–286 (2001), http://www.opticsexpress.org .
    [CrossRef]
  7. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
    [CrossRef] [PubMed]
  8. H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
    [CrossRef] [PubMed]
  9. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
    [CrossRef] [PubMed]
  10. S. R. Arridge, “Optical tomography in medical imaging,” Inv. Probl. 15, R41–R93 (1999).
    [CrossRef]
  11. H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
    [CrossRef] [PubMed]
  12. H. Jiang, Y. Xu, “Phase-contrast imaging of tissue using near-infrared diffusing light,” Med. Phys. 30, 1048–1051 (2003).
    [CrossRef] [PubMed]
  13. J. H. Lee, S. Kim, Y. T. Kim, “Finite element method for diffusive light propagations in index-mismatched media,” Opt. Express12, 1727–1740 (2004), http://www.opticsexpress.org .
    [CrossRef]
  14. B. Brooksby, H. Dehghani, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “Internal refractive index changes affect light transport in tissue,” in Optical Tomography and Spectroscopy of Tissue V,B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 296–304 (2003).
    [CrossRef]
  15. F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissue using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
    [CrossRef] [PubMed]
  16. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B 352, 661–668 (1997).
    [CrossRef]
  17. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
    [CrossRef]
  18. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
    [CrossRef] [PubMed]
  19. B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
    [CrossRef]
  20. M. Schweiger, S. R. Arridge, M. Hiroaka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
    [CrossRef] [PubMed]
  21. J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
    [CrossRef] [PubMed]
  22. S. Takatani, M. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26, 656–664 (1979).
    [CrossRef] [PubMed]
  23. G. W. Faris, “Diffusion equation boundary conditions for the interface between turbid media: a comment,” J. Opt. Soc. Am. A 19, 519–520 (2002).
    [CrossRef]
  24. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
    [CrossRef]
  25. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
    [CrossRef] [PubMed]
  26. S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
    [CrossRef] [PubMed]
  27. T. O. McBride, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXIV, J. F. Dunn, H. M. Schwartz, eds., Adv. Exp. Med. Biol.531, 85–99 (2003).
    [CrossRef]
  28. T. McBride, “Spectroscopic reconstructed near infrared tomographic imaging for breast cancer diagnosis,” Ph.D. dissertation (Dartmouth College, Hanover, 2001).

2004 (3)

J. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. Delpy, S. Arridge, J. Meek, J. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

2003 (6)

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

H. Jiang, Y. Xu, “Phase-contrast imaging of tissue using near-infrared diffusing light,” Med. Phys. 30, 1048–1051 (2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).
[CrossRef] [PubMed]

2002 (2)

G. W. Faris, “Diffusion equation boundary conditions for the interface between turbid media: a comment,” J. Opt. Soc. Am. A 19, 519–520 (2002).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

2001 (2)

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

B. Chance, “Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status,” Acad. Radiol. 8, 209–210 (2001).
[CrossRef] [PubMed]

1999 (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inv. Probl. 15, R41–R93 (1999).
[CrossRef]

1998 (1)

1997 (1)

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B 352, 661–668 (1997).
[CrossRef]

1996 (1)

1995 (2)

M. Schweiger, S. R. Arridge, M. Hiroaka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

1990 (1)

1989 (1)

1979 (1)

S. Takatani, M. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26, 656–664 (1979).
[CrossRef] [PubMed]

Anderson, E. R.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B 352, 661–668 (1997).
[CrossRef]

Arridge, S.

J. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. Delpy, S. Arridge, J. Meek, J. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

Arridge, S. R.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inv. Probl. 15, R41–R93 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiroaka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Austin, T.

J. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. Delpy, S. Arridge, J. Meek, J. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

Bolin, F. P.

Brooksby, B.

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

B. Brooksby, H. Dehghani, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “Internal refractive index changes affect light transport in tissue,” in Optical Tomography and Spectroscopy of Tissue V,B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 296–304 (2003).
[CrossRef]

Butler, J.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B 352, 661–668 (1997).
[CrossRef]

Cahn, M.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B 352, 661–668 (1997).
[CrossRef]

Chance, B.

B. Chance, “Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status,” Acad. Radiol. 8, 209–210 (2001).
[CrossRef] [PubMed]

Coquoz, O.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B 352, 661–668 (1997).
[CrossRef]

Dehghani, H.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

B. Brooksby, H. Dehghani, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “Internal refractive index changes affect light transport in tissue,” in Optical Tomography and Spectroscopy of Tissue V,B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 296–304 (2003).
[CrossRef]

Delpy, D.

J. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. Delpy, S. Arridge, J. Meek, J. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

Delpy, D. T.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiroaka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Doyley, M.

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

Dunn, J.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

Everdell, N.

J. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. Delpy, S. Arridge, J. Meek, J. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

Fantini, S.

Faris, G. W.

Ference, R. J.

Fishkin, J. B.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B 352, 661–668 (1997).
[CrossRef]

Franceschini, M. A.

Gibson, A.

J. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. Delpy, S. Arridge, J. Meek, J. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

Gibson, J. J.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

Gonzalez, F. M.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

Graham, M.

S. Takatani, M. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26, 656–664 (1979).
[CrossRef] [PubMed]

Gross, J. D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B 352, 661–668 (1997).
[CrossRef]

Hebden, J.

J. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. Delpy, S. Arridge, J. Meek, J. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

Hebden, J. C.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

Hillman, E. M. C.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Hiroaka, M.

M. Schweiger, S. R. Arridge, M. Hiroaka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Jiang, H.

Jiang, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Kaschke, M.

Kogel, C.

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

Martelli, F.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

McBride, T.

T. McBride, “Spectroscopic reconstructed near infrared tomographic imaging for breast cancer diagnosis,” Ph.D. dissertation (Dartmouth College, Hanover, 2001).

McBride, T. O.

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXIV, J. F. Dunn, H. M. Schwartz, eds., Adv. Exp. Med. Biol.531, 85–99 (2003).
[CrossRef]

Meek, J.

J. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. Delpy, S. Arridge, J. Meek, J. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

Moesta, K. T.

Osterberg, U. L.

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

T. O. McBride, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXIV, J. F. Dunn, H. M. Schwartz, eds., Adv. Exp. Med. Biol.531, 85–99 (2003).
[CrossRef]

Patterson, M. S.

Paulsen, K. D.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

B. Brooksby, H. Dehghani, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “Internal refractive index changes affect light transport in tissue,” in Optical Tomography and Spectroscopy of Tissue V,B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 296–304 (2003).
[CrossRef]

T. O. McBride, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXIV, J. F. Dunn, H. M. Schwartz, eds., Adv. Exp. Med. Biol.531, 85–99 (2003).
[CrossRef]

Pham, D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B 352, 661–668 (1997).
[CrossRef]

Pham, T.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B 352, 661–668 (1997).
[CrossRef]

Pogue, B. W.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
[CrossRef]

B. Brooksby, H. Dehghani, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “Internal refractive index changes affect light transport in tissue,” in Optical Tomography and Spectroscopy of Tissue V,B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 296–304 (2003).
[CrossRef]

T. O. McBride, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXIV, J. F. Dunn, H. M. Schwartz, eds., Adv. Exp. Med. Biol.531, 85–99 (2003).
[CrossRef]

Poplack, S. P.

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

Preuss, L. E.

Schlag, P. M.

Schmidt, F. E. W.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

Schmitt, J. M.

Schweiger, M.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiroaka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Soho, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

Song, X.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

Springett, R.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

Srinivasan, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

Takatani, S.

S. Takatani, M. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26, 656–664 (1979).
[CrossRef] [PubMed]

Taylor, R. C.

Tosteson, T. D.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

Tromberg, B. J.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B 352, 661–668 (1997).
[CrossRef]

Venugopalan, V.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B 352, 661–668 (1997).
[CrossRef]

Vishwanath, K.

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

B. Brooksby, H. Dehghani, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “Internal refractive index changes affect light transport in tissue,” in Optical Tomography and Spectroscopy of Tissue V,B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 296–304 (2003).
[CrossRef]

Walker, E. C.

Walker, S. A.

Wall, R. T.

Weaver, J. B.

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

Wyatt, J.

J. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. Delpy, S. Arridge, J. Meek, J. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

Xu, H.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

Xu, Y.

H. Jiang, Y. Xu, “Phase-contrast imaging of tissue using near-infrared diffusing light,” Med. Phys. 30, 1048–1051 (2003).
[CrossRef] [PubMed]

Yusof, R.

J. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. Delpy, S. Arridge, J. Meek, J. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

Zaccanti, G.

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

Zhou, G. X.

Acad. Radiol. (1)

B. Chance, “Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status,” Acad. Radiol. 8, 209–210 (2001).
[CrossRef] [PubMed]

Appl. Opt. (4)

IEEE Trans. Biomed. Eng. (1)

S. Takatani, M. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26, 656–664 (1979).
[CrossRef] [PubMed]

Inv. Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inv. Probl. 15, R41–R93 (1999).
[CrossRef]

J. Biomed. Opt. (4)

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, J. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102–110 (2003).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Multi-spectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt. 7, 72–79 (2002).
[CrossRef] [PubMed]

J. C. Hebden, F. M. Gonzalez, A. Gibson, E. M. C. Hillman, R. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, S. P. Poplack, K. D. Paulsen, “Characterization of hemoglobin, water and NIR scattering in breast tissue: analysis of inter-subject variability and menstrual cycle changes relative to lesions,” J. Biomed. Opt. 9, 541–552 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

Med. Phys. (3)

M. Schweiger, S. R. Arridge, M. Hiroaka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

H. Jiang, Y. Xu, “Phase-contrast imaging of tissue using near-infrared diffusing light,” Med. Phys. 30, 1048–1051 (2003).
[CrossRef] [PubMed]

Phil. Trans. R. Soc. Lond. B (1)

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B 352, 661–668 (1997).
[CrossRef]

Phys. Med. Biol. (3)

J. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. Delpy, S. Arridge, J. Meek, J. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).
[CrossRef] [PubMed]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver, S. P. Poplack, B. W. Pogue, K. D. Paulsen, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75, 5262–5270 (2004).
[CrossRef]

Other (5)

J. H. Lee, S. Kim, Y. T. Kim, “Finite element method for diffusive light propagations in index-mismatched media,” Opt. Express12, 1727–1740 (2004), http://www.opticsexpress.org .
[CrossRef]

B. Brooksby, H. Dehghani, K. Vishwanath, B. W. Pogue, K. D. Paulsen, “Internal refractive index changes affect light transport in tissue,” in Optical Tomography and Spectroscopy of Tissue V,B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 296–304 (2003).
[CrossRef]

T. O. McBride, B. W. Pogue, U. L. Osterberg, K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” in Oxygen Transport to Tissue XXIV, J. F. Dunn, H. M. Schwartz, eds., Adv. Exp. Med. Biol.531, 85–99 (2003).
[CrossRef]

T. McBride, “Spectroscopic reconstructed near infrared tomographic imaging for breast cancer diagnosis,” Ph.D. dissertation (Dartmouth College, Hanover, 2001).

A. Y. Bluestone, G. Abdoulaev, C. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical-tomography of hemodynamics in the human head,” Opt. Express9, 272–286 (2001), http://www.opticsexpress.org .
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Coronal slice of an MRI of a female subject showing adipose and glandular tissue layers and (b) the finite-element model mesh created from segmenting the MRI.

Fig. 2
Fig. 2

Images [left column, absorption (mm−1); right column, reduced scatter (mm−1)] reconstructed from synthetic data generated with a model with RI variation. Top row shows the exact optical properties; the adipose and glandular zones have the identical optical properties but different RI of 1.455 and 1.4, respectively. Middle row shows reconstructed images assuming the correct RI (same as in top row) distribution. Bottom row shows reconstructed images assuming a homogenous RI of 1.455.

Fig. 3
Fig. 3

Same as Fig. 2 except that the glandular tissue (and the anomaly) has an RI of 1.3.

Fig. 4
Fig. 4

Same as Fig. 2 except that the glandular tissue (and the anomaly) has an RI of 1.2.

Fig. 5
Fig. 5

Images [left column, absorption (mm−1); right column, reduced scatter (mm−1)] reconstructed from synthetic data generated with a model with RI variation. Top row shows the exact optical properties; the adipose and glandular tissue have different optical properties and different RI of 1.455 and 1.4, respectively. Middle row shows reconstructed images assuming the correct RI distribution. Bottom row shows reconstructed images assuming a homogenous RI of 1.455.

Fig. 6
Fig. 6

Same as Fig. 5 except that the glandular tissue (and the anomaly) has an RI of 1.3.

Fig. 7
Fig. 7

Same as Fig. 5 except that the glandular tissue (and the anomaly) has an RI of 1.2.

Fig. 8
Fig. 8

Sensitivity map (30 contour lines) of log amplitude to absorption changes for a single source and detector combination for (a) a model of homogenous RI of 1.455 having a maximum value of 1.4 × 10−10 and a minimum value of −1.72 and (b) a heterogeneous RI of adipose, 1.455, and glandular tissue, 1.2, having a maximum value of 1.3 × 10−10 and a minimum value of −1.78.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

- · κ ( r ) Φ ( r ,     ω ) + [ μ a ( r ) + i ω c m ( r ) ] × Φ ( r ,     ω ) = q 0 ( r ,     ω ) ,
κ = 1 3 ( μ a + μ s )
Φ ( ξ ,     ω ) + 2 A n ^ · κ ( ξ ) Φ ( ξ ,     ω ) = 0 ,
A = 2 / ( 1 - R 0 ) - 1 + cos θ c 3 1 - cos θ c 3 ,
R 0 = ( n 1 / n AIR - 1 ) 2 ( n 1 / n AIR + 1 ) 2 .
n ^ · D 1 Φ 1 ( ξ , ω ) = n ^ · D 2 Φ 2 ( ξ , ω ) ,
Φ 1 ( ξ ,     ω ) Φ 2 ( ξ ,     ω ) = ( n 1 n 2 ) 2 .
( μ ^ a ,     κ ^ ) = arg min μ a ,     κ [ y * - F ( μ a ,     κ ) ] ,
a = J T ( J J T + ρ I ) - 1 b ,

Metrics