Abstract

Laser speckle contrast imaging is becoming an established method for full-field imaging of cerebral blood flow dynamics in animal models. The sensitivity and noise in the measurement of blood flow changes depend on the camera exposure time. The relation among sensitivity, noise, and camera exposure time was investigated experimentally by imaging the speckle contrast changes in the brain after electrical forepaw stimulation in rats. The sensitivity to relative changes in speckle contrast was found to increase at longer exposure times and to reach a plateau for exposure times greater than approximately 2 ms. However, the speckle contrast noise also increases with exposure time and thus the contrast-to-noise ratio was found to peak at an exposure time of approximately 5 ms. Our results suggests that ~5 ms is an optimal exposure time for imaging of stimulus-induced changes in cerebral blood flow in rodents.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Englehart, J. K. Kristensen, “Evaluation of cutaneous blood flow response by Xenon washout and a laser Doppler flowmeter,” J. Invest. Dermatol. 80, 12–15 (1983).
    [CrossRef]
  2. A. V. J. Challoner, “Photoelectric plethysmography for estimating cutaneous blood flow,” in Non-invasive physiological measurements, P. Rolfe, ed. (Academic, London, 1979), Vol. 1, pp. 125–151.
  3. K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40, 687–697 (2002).
    [CrossRef]
  4. A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
    [CrossRef]
  5. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
    [CrossRef]
  6. J. D. Briers, A. F. Fercher, “Retinal blood-flow visualization by means of single-exposure speckle photography,” Invest. Ophthalmol. Vis. Sci. 22, 255–259 (1982).
    [PubMed]
  7. J. D. Briers, S. Webster, “Quasi-real time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields,” Opt. Commun. 116, 36–42 (1995).
    [CrossRef]
  8. J. D. Briers, S. Webster, “Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
    [CrossRef] [PubMed]
  9. J. D. Briers, G. Richards, X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
    [CrossRef] [PubMed]
  10. A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
    [CrossRef] [PubMed]
  11. H. Fujii, “Visualization of retinal blood flow by laser speckle flowgraphy,” Med. Biol. Eng. Comput. 32, 302–304 (1994).
    [CrossRef] [PubMed]
  12. N. Konishi, H. Fujii, “Real-time visualization of retinal microcirculation by laser flowgraphy,” Opt. Eng. 34, 753–757 (1995).
    [CrossRef]
  13. Y. Aizu, T. Asakura, A. Kojima, “Compensation of eye movements in retinal speckle flowmetry using flexible correlation analysis based on the specific variance,” J. Biomed. Opt. 3, 227–236 (1998).
    [CrossRef] [PubMed]
  14. B. Choi, N. M. Kang, J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143–146 (2004).
    [CrossRef] [PubMed]
  15. G. J. Tearney, B. E. Bouma, “Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis,” Opt. Lett. 27, 533–535 (2002).
    [CrossRef]
  16. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
    [CrossRef] [PubMed]
  17. H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 36–42 (2002).
    [CrossRef]
  18. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
    [CrossRef] [PubMed]
  19. T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
    [CrossRef] [PubMed]
  20. C. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. A. Boas, M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
    [CrossRef] [PubMed]
  21. D. N. Atochin, J. C. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. K. Dunn, M. A. Moskowitz, P. L. Huang, V. R. Muzykantov, “Mouse model of microembolic stroke and reperfusion,” Stroke 35, 2177–2182 (2004).
    [CrossRef] [PubMed]
  22. S. C. Jones, K. A. Easley, C. R. Radinsky, D. Chyatte, A. J. Furlan, A. D. Perez-Trepichio, “Nitric oxide synthase inhibition depresses the height of the cerebral blood flow-pressure autoregulation curve during moderate hypotension,” J. Cereb. Blood Flow Metab. 23, 1085–1095 (2003).
    [CrossRef] [PubMed]
  23. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Topics, 2nd ed. J. C. Dainty, ed. (Springer, Berlin, 1975), pp. 9–75.
  24. R. Bonner, R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).
    [CrossRef] [PubMed]
  25. J. F. Kenney, E. S. Keeping, “The distribution of the standard deviation,” in Mathematics of Statistics, Pt. 2, 2nd ed. (Van Nostrand, Princeton, N.J., 1951), pp. 170–173.

2004 (4)

B. Choi, N. M. Kang, J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143–146 (2004).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef] [PubMed]

C. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. A. Boas, M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
[CrossRef] [PubMed]

D. N. Atochin, J. C. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. K. Dunn, M. A. Moskowitz, P. L. Huang, V. R. Muzykantov, “Mouse model of microembolic stroke and reperfusion,” Stroke 35, 2177–2182 (2004).
[CrossRef] [PubMed]

2003 (3)

2002 (3)

H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 36–42 (2002).
[CrossRef]

G. J. Tearney, B. E. Bouma, “Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis,” Opt. Lett. 27, 533–535 (2002).
[CrossRef]

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40, 687–697 (2002).
[CrossRef]

2001 (2)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
[CrossRef]

A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[CrossRef] [PubMed]

1999 (1)

J. D. Briers, G. Richards, X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[CrossRef] [PubMed]

1998 (1)

Y. Aizu, T. Asakura, A. Kojima, “Compensation of eye movements in retinal speckle flowmetry using flexible correlation analysis based on the specific variance,” J. Biomed. Opt. 3, 227–236 (1998).
[CrossRef] [PubMed]

1996 (1)

J. D. Briers, S. Webster, “Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[CrossRef] [PubMed]

1995 (2)

J. D. Briers, S. Webster, “Quasi-real time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields,” Opt. Commun. 116, 36–42 (1995).
[CrossRef]

N. Konishi, H. Fujii, “Real-time visualization of retinal microcirculation by laser flowgraphy,” Opt. Eng. 34, 753–757 (1995).
[CrossRef]

1994 (1)

H. Fujii, “Visualization of retinal blood flow by laser speckle flowgraphy,” Med. Biol. Eng. Comput. 32, 302–304 (1994).
[CrossRef] [PubMed]

1983 (1)

M. Englehart, J. K. Kristensen, “Evaluation of cutaneous blood flow response by Xenon washout and a laser Doppler flowmeter,” J. Invest. Dermatol. 80, 12–15 (1983).
[CrossRef]

1982 (1)

J. D. Briers, A. F. Fercher, “Retinal blood-flow visualization by means of single-exposure speckle photography,” Invest. Ophthalmol. Vis. Sci. 22, 255–259 (1982).
[PubMed]

1981 (2)

A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

R. Bonner, R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).
[CrossRef] [PubMed]

Aizu, Y.

Y. Aizu, T. Asakura, A. Kojima, “Compensation of eye movements in retinal speckle flowmetry using flexible correlation analysis based on the specific variance,” J. Biomed. Opt. 3, 227–236 (1998).
[CrossRef] [PubMed]

Andermann, M. L.

Asakura, T.

Y. Aizu, T. Asakura, A. Kojima, “Compensation of eye movements in retinal speckle flowmetry using flexible correlation analysis based on the specific variance,” J. Biomed. Opt. 3, 227–236 (1998).
[CrossRef] [PubMed]

Atochin, D. N.

D. N. Atochin, J. C. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. K. Dunn, M. A. Moskowitz, P. L. Huang, V. R. Muzykantov, “Mouse model of microembolic stroke and reperfusion,” Stroke 35, 2177–2182 (2004).
[CrossRef] [PubMed]

Ayata, C.

D. N. Atochin, J. C. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. K. Dunn, M. A. Moskowitz, P. L. Huang, V. R. Muzykantov, “Mouse model of microembolic stroke and reperfusion,” Stroke 35, 2177–2182 (2004).
[CrossRef] [PubMed]

C. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. A. Boas, M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
[CrossRef] [PubMed]

Boas, D. A.

C. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. A. Boas, M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
[CrossRef] [PubMed]

H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 36–42 (2002).
[CrossRef]

A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[CrossRef] [PubMed]

Bolay, H.

Bonner, R.

Bouma, B. E.

Bray, R. C.

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40, 687–697 (2002).
[CrossRef]

Briers, J. D.

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
[CrossRef]

J. D. Briers, G. Richards, X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[CrossRef] [PubMed]

J. D. Briers, S. Webster, “Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[CrossRef] [PubMed]

J. D. Briers, S. Webster, “Quasi-real time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields,” Opt. Commun. 116, 36–42 (1995).
[CrossRef]

J. D. Briers, A. F. Fercher, “Retinal blood-flow visualization by means of single-exposure speckle photography,” Invest. Ophthalmol. Vis. Sci. 22, 255–259 (1982).
[PubMed]

A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

Burnett, M. G.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef] [PubMed]

Challoner, A. V. J.

A. V. J. Challoner, “Photoelectric plethysmography for estimating cutaneous blood flow,” in Non-invasive physiological measurements, P. Rolfe, ed. (Academic, London, 1979), Vol. 1, pp. 125–151.

Choi, B.

B. Choi, N. M. Kang, J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143–146 (2004).
[CrossRef] [PubMed]

Chyatte, D.

S. C. Jones, K. A. Easley, C. R. Radinsky, D. Chyatte, A. J. Furlan, A. D. Perez-Trepichio, “Nitric oxide synthase inhibition depresses the height of the cerebral blood flow-pressure autoregulation curve during moderate hypotension,” J. Cereb. Blood Flow Metab. 23, 1085–1095 (2003).
[CrossRef] [PubMed]

Dale, A. M.

Detre, J. A.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef] [PubMed]

Devor, A.

Dunn, A. K.

C. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. A. Boas, M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
[CrossRef] [PubMed]

D. N. Atochin, J. C. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. K. Dunn, M. A. Moskowitz, P. L. Huang, V. R. Muzykantov, “Mouse model of microembolic stroke and reperfusion,” Stroke 35, 2177–2182 (2004).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
[CrossRef] [PubMed]

H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 36–42 (2002).
[CrossRef]

A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[CrossRef] [PubMed]

Durduran, T.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef] [PubMed]

Easley, K. A.

S. C. Jones, K. A. Easley, C. R. Radinsky, D. Chyatte, A. J. Furlan, A. D. Perez-Trepichio, “Nitric oxide synthase inhibition depresses the height of the cerebral blood flow-pressure autoregulation curve during moderate hypotension,” J. Cereb. Blood Flow Metab. 23, 1085–1095 (2003).
[CrossRef] [PubMed]

Englehart, M.

M. Englehart, J. K. Kristensen, “Evaluation of cutaneous blood flow response by Xenon washout and a laser Doppler flowmeter,” J. Invest. Dermatol. 80, 12–15 (1983).
[CrossRef]

Fercher, A. F.

J. D. Briers, A. F. Fercher, “Retinal blood-flow visualization by means of single-exposure speckle photography,” Invest. Ophthalmol. Vis. Sci. 22, 255–259 (1982).
[PubMed]

A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

Forrester, K. R.

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40, 687–697 (2002).
[CrossRef]

Fujii, H.

N. Konishi, H. Fujii, “Real-time visualization of retinal microcirculation by laser flowgraphy,” Opt. Eng. 34, 753–757 (1995).
[CrossRef]

H. Fujii, “Visualization of retinal blood flow by laser speckle flowgraphy,” Med. Biol. Eng. Comput. 32, 302–304 (1994).
[CrossRef] [PubMed]

Furlan, A. J.

S. C. Jones, K. A. Easley, C. R. Radinsky, D. Chyatte, A. J. Furlan, A. D. Perez-Trepichio, “Nitric oxide synthase inhibition depresses the height of the cerebral blood flow-pressure autoregulation curve during moderate hypotension,” J. Cereb. Blood Flow Metab. 23, 1085–1095 (2003).
[CrossRef] [PubMed]

Furuya, D.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Topics, 2nd ed. J. C. Dainty, ed. (Springer, Berlin, 1975), pp. 9–75.

Greenberg, J. H.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef] [PubMed]

Gursoy-Ozdemir, Y.

C. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. A. Boas, M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
[CrossRef] [PubMed]

D. N. Atochin, J. C. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. K. Dunn, M. A. Moskowitz, P. L. Huang, V. R. Muzykantov, “Mouse model of microembolic stroke and reperfusion,” Stroke 35, 2177–2182 (2004).
[CrossRef] [PubMed]

He, X. W.

J. D. Briers, G. Richards, X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[CrossRef] [PubMed]

Huang, P. L.

D. N. Atochin, J. C. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. K. Dunn, M. A. Moskowitz, P. L. Huang, V. R. Muzykantov, “Mouse model of microembolic stroke and reperfusion,” Stroke 35, 2177–2182 (2004).
[CrossRef] [PubMed]

Huang, Z.

C. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. A. Boas, M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
[CrossRef] [PubMed]

H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 36–42 (2002).
[CrossRef]

Jones, S. C.

S. C. Jones, K. A. Easley, C. R. Radinsky, D. Chyatte, A. J. Furlan, A. D. Perez-Trepichio, “Nitric oxide synthase inhibition depresses the height of the cerebral blood flow-pressure autoregulation curve during moderate hypotension,” J. Cereb. Blood Flow Metab. 23, 1085–1095 (2003).
[CrossRef] [PubMed]

Kang, N. M.

B. Choi, N. M. Kang, J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143–146 (2004).
[CrossRef] [PubMed]

Keeping, E. S.

J. F. Kenney, E. S. Keeping, “The distribution of the standard deviation,” in Mathematics of Statistics, Pt. 2, 2nd ed. (Van Nostrand, Princeton, N.J., 1951), pp. 170–173.

Kenney, J. F.

J. F. Kenney, E. S. Keeping, “The distribution of the standard deviation,” in Mathematics of Statistics, Pt. 2, 2nd ed. (Van Nostrand, Princeton, N.J., 1951), pp. 170–173.

Kojima, A.

Y. Aizu, T. Asakura, A. Kojima, “Compensation of eye movements in retinal speckle flowmetry using flexible correlation analysis based on the specific variance,” J. Biomed. Opt. 3, 227–236 (1998).
[CrossRef] [PubMed]

Konishi, N.

N. Konishi, H. Fujii, “Real-time visualization of retinal microcirculation by laser flowgraphy,” Opt. Eng. 34, 753–757 (1995).
[CrossRef]

Krasik, T.

D. N. Atochin, J. C. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. K. Dunn, M. A. Moskowitz, P. L. Huang, V. R. Muzykantov, “Mouse model of microembolic stroke and reperfusion,” Stroke 35, 2177–2182 (2004).
[CrossRef] [PubMed]

Kristensen, J. K.

M. Englehart, J. K. Kristensen, “Evaluation of cutaneous blood flow response by Xenon washout and a laser Doppler flowmeter,” J. Invest. Dermatol. 80, 12–15 (1983).
[CrossRef]

Leonard, C.

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40, 687–697 (2002).
[CrossRef]

Moskowitz, M. A.

C. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. A. Boas, M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
[CrossRef] [PubMed]

D. N. Atochin, J. C. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. K. Dunn, M. A. Moskowitz, P. L. Huang, V. R. Muzykantov, “Mouse model of microembolic stroke and reperfusion,” Stroke 35, 2177–2182 (2004).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003).
[CrossRef] [PubMed]

H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 36–42 (2002).
[CrossRef]

A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[CrossRef] [PubMed]

Murciano, J. C.

D. N. Atochin, J. C. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. K. Dunn, M. A. Moskowitz, P. L. Huang, V. R. Muzykantov, “Mouse model of microembolic stroke and reperfusion,” Stroke 35, 2177–2182 (2004).
[CrossRef] [PubMed]

Muzykantov, V. R.

D. N. Atochin, J. C. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. K. Dunn, M. A. Moskowitz, P. L. Huang, V. R. Muzykantov, “Mouse model of microembolic stroke and reperfusion,” Stroke 35, 2177–2182 (2004).
[CrossRef] [PubMed]

Nelson, J. S.

B. Choi, N. M. Kang, J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143–146 (2004).
[CrossRef] [PubMed]

Noda, F.

D. N. Atochin, J. C. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. K. Dunn, M. A. Moskowitz, P. L. Huang, V. R. Muzykantov, “Mouse model of microembolic stroke and reperfusion,” Stroke 35, 2177–2182 (2004).
[CrossRef] [PubMed]

Nossal, R.

Perez-Trepichio, A. D.

S. C. Jones, K. A. Easley, C. R. Radinsky, D. Chyatte, A. J. Furlan, A. D. Perez-Trepichio, “Nitric oxide synthase inhibition depresses the height of the cerebral blood flow-pressure autoregulation curve during moderate hypotension,” J. Cereb. Blood Flow Metab. 23, 1085–1095 (2003).
[CrossRef] [PubMed]

Radinsky, C. R.

S. C. Jones, K. A. Easley, C. R. Radinsky, D. Chyatte, A. J. Furlan, A. D. Perez-Trepichio, “Nitric oxide synthase inhibition depresses the height of the cerebral blood flow-pressure autoregulation curve during moderate hypotension,” J. Cereb. Blood Flow Metab. 23, 1085–1095 (2003).
[CrossRef] [PubMed]

Reuter, U.

H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 36–42 (2002).
[CrossRef]

Richards, G.

J. D. Briers, G. Richards, X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[CrossRef] [PubMed]

Stewart, C.

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40, 687–697 (2002).
[CrossRef]

Tearney, G. J.

Tulip, J.

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40, 687–697 (2002).
[CrossRef]

Webster, S.

J. D. Briers, S. Webster, “Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[CrossRef] [PubMed]

J. D. Briers, S. Webster, “Quasi-real time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields,” Opt. Commun. 116, 36–42 (1995).
[CrossRef]

Yodh, A. G.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef] [PubMed]

Yu, G.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef] [PubMed]

Zhou, C.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Invest. Ophthalmol. Vis. Sci. (1)

J. D. Briers, A. F. Fercher, “Retinal blood-flow visualization by means of single-exposure speckle photography,” Invest. Ophthalmol. Vis. Sci. 22, 255–259 (1982).
[PubMed]

J. Biomed. Opt. (3)

Y. Aizu, T. Asakura, A. Kojima, “Compensation of eye movements in retinal speckle flowmetry using flexible correlation analysis based on the specific variance,” J. Biomed. Opt. 3, 227–236 (1998).
[CrossRef] [PubMed]

J. D. Briers, S. Webster, “Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[CrossRef] [PubMed]

J. D. Briers, G. Richards, X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4, 164–175 (1999).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (4)

A. K. Dunn, H. Bolay, M. A. Moskowitz, D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004).
[CrossRef] [PubMed]

C. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. Huang, D. A. Boas, M. A. Moskowitz, “Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex,” J. Cereb. Blood Flow Metab. 24, 744–755 (2004).
[CrossRef] [PubMed]

S. C. Jones, K. A. Easley, C. R. Radinsky, D. Chyatte, A. J. Furlan, A. D. Perez-Trepichio, “Nitric oxide synthase inhibition depresses the height of the cerebral blood flow-pressure autoregulation curve during moderate hypotension,” J. Cereb. Blood Flow Metab. 23, 1085–1095 (2003).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

M. Englehart, J. K. Kristensen, “Evaluation of cutaneous blood flow response by Xenon washout and a laser Doppler flowmeter,” J. Invest. Dermatol. 80, 12–15 (1983).
[CrossRef]

Med. Biol. Eng. Comput. (2)

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40, 687–697 (2002).
[CrossRef]

H. Fujii, “Visualization of retinal blood flow by laser speckle flowgraphy,” Med. Biol. Eng. Comput. 32, 302–304 (1994).
[CrossRef] [PubMed]

Microvasc. Res. (1)

B. Choi, N. M. Kang, J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143–146 (2004).
[CrossRef] [PubMed]

Nat. Med. (1)

H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med. 8, 36–42 (2002).
[CrossRef]

Opt. Commun. (2)

J. D. Briers, S. Webster, “Quasi-real time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields,” Opt. Commun. 116, 36–42 (1995).
[CrossRef]

A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[CrossRef]

Opt. Eng. (1)

N. Konishi, H. Fujii, “Real-time visualization of retinal microcirculation by laser flowgraphy,” Opt. Eng. 34, 753–757 (1995).
[CrossRef]

Opt. Lett. (3)

Physiol. Meas. (1)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
[CrossRef]

Stroke (1)

D. N. Atochin, J. C. Murciano, Y. Gursoy-Ozdemir, T. Krasik, F. Noda, C. Ayata, A. K. Dunn, M. A. Moskowitz, P. L. Huang, V. R. Muzykantov, “Mouse model of microembolic stroke and reperfusion,” Stroke 35, 2177–2182 (2004).
[CrossRef] [PubMed]

Other (3)

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Topics, 2nd ed. J. C. Dainty, ed. (Springer, Berlin, 1975), pp. 9–75.

J. F. Kenney, E. S. Keeping, “The distribution of the standard deviation,” in Mathematics of Statistics, Pt. 2, 2nd ed. (Van Nostrand, Princeton, N.J., 1951), pp. 170–173.

A. V. J. Challoner, “Photoelectric plethysmography for estimating cutaneous blood flow,” in Non-invasive physiological measurements, P. Rolfe, ed. (Academic, London, 1979), Vol. 1, pp. 125–151.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Theoretical plots of speckle contrast K, absolute sensitivity Sa and relative sensitivity Sr.

Fig. 2
Fig. 2

Experimental setup for laser speckle contrast imaging (LSCI) of CBF during electrical forepaw stimulation.

Fig. 3
Fig. 3

Measured speckle contrast as a function of f#, where the peak speckle contrast indicates the optimal match between the speckle size and the pixel size.

Fig. 4
Fig. 4

Speckle contrast images of the somatosensory cortex at exposure times of 0.5, 5, and 20 ms. The imaging area is approximately 5.2 mm × 6.0 mm.

Fig. 5
Fig. 5

(a) Image taken with green-light illumination (λ = 560 nm) illustrating the vasculature; (b) images of the stimulus-induced changes in speckle contrast at different exposure times (0.5 ms to 20 ms). Each image is the ratio of the average speckle contrast over a 2.5-s window after stimulation onset to the average baseline speckle contrast. The imaging area is approximately 5.8 mm × 5.8 mm.

Fig. 6
Fig. 6

Timecourse of the speckle contrast changes at each exposure time within a 0.5 mm × 0.5 mm area centered on the area of activation for one animal. Error bars show the standard deviation over 80 stimulation trials.

Fig. 7
Fig. 7

Experimentally measured sensitivity versus exposure time. The sensitivity for each rat has been normalized to the mean value over all exposure times, and the error bars show the standard error between animals.

Fig. 8
Fig. 8

Relative noise of the speckle contrast signal (σK/K) as a function of exposure time. Error bars show the standard error between animals.

Fig. 9
Fig. 9

Normalized CNR as a function of exposure time. Error bars show the standard error between animals.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

K = σ s I ,
d = 2.44 λ f / # M ,
σ 2 ( T ) = 1 T 0 T C t ( τ ) d τ ,
K ( T ) = σ s I = { τ c 2 T [ 1 - exp ( - 2 T τ c ) ] } 1 / 2 ,
S a = | d K d ν | - τ c r d K d ( T τ c ) = - τ c r d K d r = τ c r 2 K [ 1 2 r 2 - ( 2 r + 1 ) 2 r 2 exp ( - 2 r ) ] ,
S r = | d K K d ν ν | = - d K K d r r = - r K d K d r = 1 2 K 2 [ 1 2 r - ( 2 r + 1 ) 2 r exp ( - 2 r ) ] .

Metrics