Abstract

The authors have proposed an architecture for a compact image-capturing system called TOMBO (thin observation module by bound optics), which uses compound-eye imaging for a compact hardware configuration [Appl. Opt. 40, 1806 (2001)]. The captured compound image is decomposed into a set of unit images, then the pixels in the unit images are processed with digital processing to retrieve the target image. A new method for high-resolution image reconstruction, called a pixel rearrange method, is proposed. The relation between the target object and the captured signals is estimated and utilized to rearrange the original pixel information. Experimental results show the effectiveness of the proposed method. In the experimental TOMBO system, the resolution obtained is four times higher than that of the unit image that did not undergo reconstruction processing.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ogata, J. Ishida, T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33, 3649–3655 (1994).
    [CrossRef]
  2. J. S. Sanders, C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34, 222–235 (1995).
    [CrossRef]
  3. K. Hamanaka, H. Koshi, “An artificial compound eye using a microlens array and its application to scale invariant processing,” Opt. Rev. 3, 264–268 (1996).
    [CrossRef]
  4. G. A. Horridge, “Apposition eyes of large diurnal insects as organs adapted to seeing,” Proc. R. Soc. London 207, 287–309 (1980).
    [CrossRef]
  5. E. Hecht, Optics, 3rd ed. (Addison-Wesley, Reading, Mass., 1998), Chap. 3.
  6. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
    [CrossRef]
  7. J. Tanida, Y. Kitamura, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, Y. Ichioka, “Compact image capturing system based on compound imaging and digital reconstruction,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienpont, G. E. Jabbour, eds., Proc. SPIE4455, 34–41 (2001).
    [CrossRef]
  8. M. W. Burke, Image Acquisition (The Alden Press, Oxford, 1996).
    [CrossRef]
  9. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  10. W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, England, 1988).
  11. P. Cheeseman, B. Kanefsky, R. Kraft, J. Stutz, R. Hanson, “Super-resolved surface reconstruction from multiple images,” in Maximum Entropy and Bayesian Methods, G. R. Heidbreder, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 293–308.
    [CrossRef]
  12. J. A. Nelder, R. Mead, “A Simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
    [CrossRef]
  13. H. C. Andrews, B. R. Hunt, Digital Image Restoration (Prentice-Hall, Englewood Cliffs, N.J., 1977).
  14. S. Miyatake, K. Ishida, T. Morimoto, Y. Masaki, H. Tanabe, “Transverse-readout CMOS active pixel image sensor,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, M. M. Blouke, J. Canosa, N. Sampat, eds., Proc. SPIE4306, 128–136 (2001).
    [CrossRef]

2001

1996

K. Hamanaka, H. Koshi, “An artificial compound eye using a microlens array and its application to scale invariant processing,” Opt. Rev. 3, 264–268 (1996).
[CrossRef]

1995

J. S. Sanders, C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34, 222–235 (1995).
[CrossRef]

1994

S. Ogata, J. Ishida, T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33, 3649–3655 (1994).
[CrossRef]

1980

G. A. Horridge, “Apposition eyes of large diurnal insects as organs adapted to seeing,” Proc. R. Soc. London 207, 287–309 (1980).
[CrossRef]

1965

J. A. Nelder, R. Mead, “A Simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

Andrews, H. C.

H. C. Andrews, B. R. Hunt, Digital Image Restoration (Prentice-Hall, Englewood Cliffs, N.J., 1977).

Burke, M. W.

M. W. Burke, Image Acquisition (The Alden Press, Oxford, 1996).
[CrossRef]

Cheeseman, P.

P. Cheeseman, B. Kanefsky, R. Kraft, J. Stutz, R. Hanson, “Super-resolved surface reconstruction from multiple images,” in Maximum Entropy and Bayesian Methods, G. R. Heidbreder, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 293–308.
[CrossRef]

Flannery, B.

W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, England, 1988).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Halford, C. E.

J. S. Sanders, C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34, 222–235 (1995).
[CrossRef]

Hamanaka, K.

K. Hamanaka, H. Koshi, “An artificial compound eye using a microlens array and its application to scale invariant processing,” Opt. Rev. 3, 264–268 (1996).
[CrossRef]

Hanson, R.

P. Cheeseman, B. Kanefsky, R. Kraft, J. Stutz, R. Hanson, “Super-resolved surface reconstruction from multiple images,” in Maximum Entropy and Bayesian Methods, G. R. Heidbreder, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 293–308.
[CrossRef]

Hecht, E.

E. Hecht, Optics, 3rd ed. (Addison-Wesley, Reading, Mass., 1998), Chap. 3.

Horridge, G. A.

G. A. Horridge, “Apposition eyes of large diurnal insects as organs adapted to seeing,” Proc. R. Soc. London 207, 287–309 (1980).
[CrossRef]

Hunt, B. R.

H. C. Andrews, B. R. Hunt, Digital Image Restoration (Prentice-Hall, Englewood Cliffs, N.J., 1977).

Ichioka, Y.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
[CrossRef]

J. Tanida, Y. Kitamura, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, Y. Ichioka, “Compact image capturing system based on compound imaging and digital reconstruction,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienpont, G. E. Jabbour, eds., Proc. SPIE4455, 34–41 (2001).
[CrossRef]

Ishida, J.

S. Ogata, J. Ishida, T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33, 3649–3655 (1994).
[CrossRef]

Ishida, K.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
[CrossRef]

S. Miyatake, K. Ishida, T. Morimoto, Y. Masaki, H. Tanabe, “Transverse-readout CMOS active pixel image sensor,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, M. M. Blouke, J. Canosa, N. Sampat, eds., Proc. SPIE4306, 128–136 (2001).
[CrossRef]

Kanefsky, B.

P. Cheeseman, B. Kanefsky, R. Kraft, J. Stutz, R. Hanson, “Super-resolved surface reconstruction from multiple images,” in Maximum Entropy and Bayesian Methods, G. R. Heidbreder, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 293–308.
[CrossRef]

Kitamura, Y.

J. Tanida, Y. Kitamura, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, Y. Ichioka, “Compact image capturing system based on compound imaging and digital reconstruction,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienpont, G. E. Jabbour, eds., Proc. SPIE4455, 34–41 (2001).
[CrossRef]

Kondou, N.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
[CrossRef]

J. Tanida, Y. Kitamura, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, Y. Ichioka, “Compact image capturing system based on compound imaging and digital reconstruction,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienpont, G. E. Jabbour, eds., Proc. SPIE4455, 34–41 (2001).
[CrossRef]

Koshi, H.

K. Hamanaka, H. Koshi, “An artificial compound eye using a microlens array and its application to scale invariant processing,” Opt. Rev. 3, 264–268 (1996).
[CrossRef]

Kraft, R.

P. Cheeseman, B. Kanefsky, R. Kraft, J. Stutz, R. Hanson, “Super-resolved surface reconstruction from multiple images,” in Maximum Entropy and Bayesian Methods, G. R. Heidbreder, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 293–308.
[CrossRef]

Kumagai, T.

Masaki, Y.

J. Tanida, Y. Kitamura, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, Y. Ichioka, “Compact image capturing system based on compound imaging and digital reconstruction,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienpont, G. E. Jabbour, eds., Proc. SPIE4455, 34–41 (2001).
[CrossRef]

S. Miyatake, K. Ishida, T. Morimoto, Y. Masaki, H. Tanabe, “Transverse-readout CMOS active pixel image sensor,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, M. M. Blouke, J. Canosa, N. Sampat, eds., Proc. SPIE4306, 128–136 (2001).
[CrossRef]

Mead, R.

J. A. Nelder, R. Mead, “A Simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

Miyamoto, M.

J. Tanida, Y. Kitamura, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, Y. Ichioka, “Compact image capturing system based on compound imaging and digital reconstruction,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienpont, G. E. Jabbour, eds., Proc. SPIE4455, 34–41 (2001).
[CrossRef]

Miyatake, S.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
[CrossRef]

J. Tanida, Y. Kitamura, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, Y. Ichioka, “Compact image capturing system based on compound imaging and digital reconstruction,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienpont, G. E. Jabbour, eds., Proc. SPIE4455, 34–41 (2001).
[CrossRef]

S. Miyatake, K. Ishida, T. Morimoto, Y. Masaki, H. Tanabe, “Transverse-readout CMOS active pixel image sensor,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, M. M. Blouke, J. Canosa, N. Sampat, eds., Proc. SPIE4306, 128–136 (2001).
[CrossRef]

Miyazaki, D.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
[CrossRef]

J. Tanida, Y. Kitamura, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, Y. Ichioka, “Compact image capturing system based on compound imaging and digital reconstruction,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienpont, G. E. Jabbour, eds., Proc. SPIE4455, 34–41 (2001).
[CrossRef]

Morimoto, T.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
[CrossRef]

J. Tanida, Y. Kitamura, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, Y. Ichioka, “Compact image capturing system based on compound imaging and digital reconstruction,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienpont, G. E. Jabbour, eds., Proc. SPIE4455, 34–41 (2001).
[CrossRef]

S. Miyatake, K. Ishida, T. Morimoto, Y. Masaki, H. Tanabe, “Transverse-readout CMOS active pixel image sensor,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, M. M. Blouke, J. Canosa, N. Sampat, eds., Proc. SPIE4306, 128–136 (2001).
[CrossRef]

Nelder, J. A.

J. A. Nelder, R. Mead, “A Simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

Ogata, S.

S. Ogata, J. Ishida, T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33, 3649–3655 (1994).
[CrossRef]

Press, W.

W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, England, 1988).

Sanders, J. S.

J. S. Sanders, C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34, 222–235 (1995).
[CrossRef]

Sasano, T.

S. Ogata, J. Ishida, T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33, 3649–3655 (1994).
[CrossRef]

Stutz, J.

P. Cheeseman, B. Kanefsky, R. Kraft, J. Stutz, R. Hanson, “Super-resolved surface reconstruction from multiple images,” in Maximum Entropy and Bayesian Methods, G. R. Heidbreder, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 293–308.
[CrossRef]

Tanabe, H.

S. Miyatake, K. Ishida, T. Morimoto, Y. Masaki, H. Tanabe, “Transverse-readout CMOS active pixel image sensor,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, M. M. Blouke, J. Canosa, N. Sampat, eds., Proc. SPIE4306, 128–136 (2001).
[CrossRef]

Tanida, J.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
[CrossRef]

J. Tanida, Y. Kitamura, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, Y. Ichioka, “Compact image capturing system based on compound imaging and digital reconstruction,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienpont, G. E. Jabbour, eds., Proc. SPIE4455, 34–41 (2001).
[CrossRef]

Teukolsky, S.

W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, England, 1988).

Vetterling, W.

W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, England, 1988).

Yamada, K.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
[CrossRef]

J. Tanida, Y. Kitamura, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, Y. Ichioka, “Compact image capturing system based on compound imaging and digital reconstruction,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienpont, G. E. Jabbour, eds., Proc. SPIE4455, 34–41 (2001).
[CrossRef]

Appl. Opt.

Comput. J.

J. A. Nelder, R. Mead, “A Simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
[CrossRef]

Opt. Eng.

S. Ogata, J. Ishida, T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33, 3649–3655 (1994).
[CrossRef]

J. S. Sanders, C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34, 222–235 (1995).
[CrossRef]

Opt. Rev.

K. Hamanaka, H. Koshi, “An artificial compound eye using a microlens array and its application to scale invariant processing,” Opt. Rev. 3, 264–268 (1996).
[CrossRef]

Proc. R. Soc. London

G. A. Horridge, “Apposition eyes of large diurnal insects as organs adapted to seeing,” Proc. R. Soc. London 207, 287–309 (1980).
[CrossRef]

Other

E. Hecht, Optics, 3rd ed. (Addison-Wesley, Reading, Mass., 1998), Chap. 3.

J. Tanida, Y. Kitamura, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, Y. Ichioka, “Compact image capturing system based on compound imaging and digital reconstruction,” in Micro- and Nano-Optics for Optical Interconnection and Information Processing, M. R. Taghizadeh, H. Thienpont, G. E. Jabbour, eds., Proc. SPIE4455, 34–41 (2001).
[CrossRef]

M. W. Burke, Image Acquisition (The Alden Press, Oxford, 1996).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes in C (Cambridge U. Press, Cambridge, England, 1988).

P. Cheeseman, B. Kanefsky, R. Kraft, J. Stutz, R. Hanson, “Super-resolved surface reconstruction from multiple images,” in Maximum Entropy and Bayesian Methods, G. R. Heidbreder, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 293–308.
[CrossRef]

H. C. Andrews, B. R. Hunt, Digital Image Restoration (Prentice-Hall, Englewood Cliffs, N.J., 1977).

S. Miyatake, K. Ishida, T. Morimoto, Y. Masaki, H. Tanabe, “Transverse-readout CMOS active pixel image sensor,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, M. M. Blouke, J. Canosa, N. Sampat, eds., Proc. SPIE4306, 128–136 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Hardware configuration of TOMBO.

Fig. 2
Fig. 2

Image acquisition by the TOMBO system.

Fig. 3
Fig. 3

Schematic diagram of the pixel rearrange method.

Fig. 4
Fig. 4

Explanation of the peak determination for the correlation between two resemble functions: (a) correlation curve between continuous functions, (b) series of correlation signals between discrete functions, (c) interpolated curve for (b), (d) threshold level for eliminating noises. The peak position is determined as the point equalizing the two shaded areas.

Fig. 5
Fig. 5

Relation between the object plane and the image plane.

Fig. 6
Fig. 6

Photograph of the experimental TOMBO system.

Fig. 7
Fig. 7

Image reconstruction of Lena: (a) original image, (b) compound-eye image, (c) unit image, (d) reconstructed image obtained by the 2-D correlation method, (e) reconstructed image obtained by the maximum likelihood method.

Fig. 8
Fig. 8

Relative unit-image positions calculated by the correlation method.

Fig. 9
Fig. 9

Image reconstruction of the Siemens’s star for resolution limit measurement: (a) original image, (b) unit image, (c) reconstructed image, (d) pseudoinverse filtered image.

Tables (1)

Tables Icon

Table 1 Signal-to-Noise Ratio of Reconstructed Images

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

N = μ ν ,
O x ,   y = C   O x ,   y - B x ,   y W x ,   y - B x ,   y ,
R x ,   y = - -   f x ,   y g x - x ,   y - y d x d y - -   | f x ,   y | 2 d x d y 1 / 2 - -   | g x ,   y | 2 d x d y 1 / 2 .
- - x peak   R x ,   y d x d y = - x peak   R x ,   y d x d y ,
- y peak -   R x ,   y d x d y = y peak -   R x ,   y d x d y .
P all pixel values | input conditions ,   object model = k = 1 K i = 1 N   P y i , k | a 1 , ,   a M ,   y k x i ,
E a 1 , ,   a M = 1 KN k = 1 K i = 1 N y i , k - y k x i 2 .
G f x ,   f y = F f x ,   f y H f x ,   f y + N f x ,   f y ,
F ˆ f x ,   f y = H f x ,   f y 2 G f x ,   f y H f x ,   f y 2 H f x ,   f y + C ,

Metrics