Abstract

Producing channel waveguides requires a photolithographic mask, but the standard technique of using thermally evaporated metal films for proton exchange has proved to be unsuitable for withstanding the rather aggressive process of reverse proton exchange. We report the fabrication of a nonstoichiometric silica mask by ion-plating plasma-assisted deposition. This mask is strong enough to resist both direct and reverse proton exchange and is also compatible with anisotropic dry etching for patterning the mask and with electric field poling. Our technique is a practical alternative to the use of SiO2 sputtered masks.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, “Nonlinear optical frequency conversion: material requirements, engineered materials, and quasi-phasematching,” in Beam Shaping and Control with Nonlinear Optics, F. Kajzar, R. Reinisch, eds. (Plenum, New York, 1998), pp. 375–406.
  2. M. H. Chou, J. Hauden, M. A. Arbore, M. M. Fejer, “1.5-μm band wavelength conversion based on difference frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998).
    [CrossRef]
  3. A. Di Lallo, C. Conti, A. Cino, G. Assanto, “Efficient frequency doubling in reverse proton exchanged lithium niobate waveguides,” IEEE Photon. Technol. Lett. 13, 323–325 (2001).
    [CrossRef]
  4. A. Di Lallo, A. Cino, C. Conti, G. Assanto, “Second harmonic generation in reverse proton exchanged lithium niobate waveguides,” Opt. Exp. 8, 232–237 (2001), http://www.opticsexpress.org .
    [CrossRef]
  5. R. S. Weis, T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
    [CrossRef]
  6. M. L. Bortz, M. A. Arbore, M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995).
    [CrossRef] [PubMed]
  7. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
    [CrossRef]
  8. A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse proton exchange,” IEEE Photon. Technol. Lett. 15, 443–445 (2002).
    [CrossRef]
  9. H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984).
  10. D. M. Mattox, “Ion plating—past, present and future,” Surf. Coat. Technol. 133-134, 517–521 (2000).
    [CrossRef]
  11. J. M. E. Harper, J. J. Cuomo, H. T. G. Hentzell, “Quantitative ion beam process for the deposition of compound thin films,” Appl. Phys. Lett. 43, 547–549 (1983).
    [CrossRef]

2002

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002).
[CrossRef]

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse proton exchange,” IEEE Photon. Technol. Lett. 15, 443–445 (2002).
[CrossRef]

2001

A. Di Lallo, C. Conti, A. Cino, G. Assanto, “Efficient frequency doubling in reverse proton exchanged lithium niobate waveguides,” IEEE Photon. Technol. Lett. 13, 323–325 (2001).
[CrossRef]

A. Di Lallo, A. Cino, C. Conti, G. Assanto, “Second harmonic generation in reverse proton exchanged lithium niobate waveguides,” Opt. Exp. 8, 232–237 (2001), http://www.opticsexpress.org .
[CrossRef]

2000

D. M. Mattox, “Ion plating—past, present and future,” Surf. Coat. Technol. 133-134, 517–521 (2000).
[CrossRef]

1998

1995

1985

R. S. Weis, T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

1983

J. M. E. Harper, J. J. Cuomo, H. T. G. Hentzell, “Quantitative ion beam process for the deposition of compound thin films,” Appl. Phys. Lett. 43, 547–549 (1983).
[CrossRef]

Amoroso, A.

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse proton exchange,” IEEE Photon. Technol. Lett. 15, 443–445 (2002).
[CrossRef]

Arbore, M. A.

Assanto, G.

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse proton exchange,” IEEE Photon. Technol. Lett. 15, 443–445 (2002).
[CrossRef]

A. Di Lallo, C. Conti, A. Cino, G. Assanto, “Efficient frequency doubling in reverse proton exchanged lithium niobate waveguides,” IEEE Photon. Technol. Lett. 13, 323–325 (2001).
[CrossRef]

A. Di Lallo, A. Cino, C. Conti, G. Assanto, “Second harmonic generation in reverse proton exchanged lithium niobate waveguides,” Opt. Exp. 8, 232–237 (2001), http://www.opticsexpress.org .
[CrossRef]

Bortz, M. L.

Chou, M. H.

Cino, A.

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse proton exchange,” IEEE Photon. Technol. Lett. 15, 443–445 (2002).
[CrossRef]

A. Di Lallo, C. Conti, A. Cino, G. Assanto, “Efficient frequency doubling in reverse proton exchanged lithium niobate waveguides,” IEEE Photon. Technol. Lett. 13, 323–325 (2001).
[CrossRef]

A. Di Lallo, A. Cino, C. Conti, G. Assanto, “Second harmonic generation in reverse proton exchanged lithium niobate waveguides,” Opt. Exp. 8, 232–237 (2001), http://www.opticsexpress.org .
[CrossRef]

Conti, C.

A. Di Lallo, A. Cino, C. Conti, G. Assanto, “Second harmonic generation in reverse proton exchanged lithium niobate waveguides,” Opt. Exp. 8, 232–237 (2001), http://www.opticsexpress.org .
[CrossRef]

A. Di Lallo, C. Conti, A. Cino, G. Assanto, “Efficient frequency doubling in reverse proton exchanged lithium niobate waveguides,” IEEE Photon. Technol. Lett. 13, 323–325 (2001).
[CrossRef]

Cuomo, J. J.

J. M. E. Harper, J. J. Cuomo, H. T. G. Hentzell, “Quantitative ion beam process for the deposition of compound thin films,” Appl. Phys. Lett. 43, 547–549 (1983).
[CrossRef]

Di Falco, A.

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse proton exchange,” IEEE Photon. Technol. Lett. 15, 443–445 (2002).
[CrossRef]

Di Lallo, A.

A. Di Lallo, C. Conti, A. Cino, G. Assanto, “Efficient frequency doubling in reverse proton exchanged lithium niobate waveguides,” IEEE Photon. Technol. Lett. 13, 323–325 (2001).
[CrossRef]

A. Di Lallo, A. Cino, C. Conti, G. Assanto, “Second harmonic generation in reverse proton exchanged lithium niobate waveguides,” Opt. Exp. 8, 232–237 (2001), http://www.opticsexpress.org .
[CrossRef]

Fejer, M. M.

Fujimura, M.

Gaylord, T. K.

R. S. Weis, T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Harper, J. M. E.

J. M. E. Harper, J. J. Cuomo, H. T. G. Hentzell, “Quantitative ion beam process for the deposition of compound thin films,” Appl. Phys. Lett. 43, 547–549 (1983).
[CrossRef]

Hauden, J.

Hentzell, H. T. G.

J. M. E. Harper, J. J. Cuomo, H. T. G. Hentzell, “Quantitative ion beam process for the deposition of compound thin films,” Appl. Phys. Lett. 43, 547–549 (1983).
[CrossRef]

Kurz, J. R.

Leo, G.

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse proton exchange,” IEEE Photon. Technol. Lett. 15, 443–445 (2002).
[CrossRef]

Mattox, D. M.

D. M. Mattox, “Ion plating—past, present and future,” Surf. Coat. Technol. 133-134, 517–521 (2000).
[CrossRef]

Parameswaran, K. R.

Parisi, A.

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse proton exchange,” IEEE Photon. Technol. Lett. 15, 443–445 (2002).
[CrossRef]

Pulker, H. K.

H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984).

Riva Sanseverino, S.

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse proton exchange,” IEEE Photon. Technol. Lett. 15, 443–445 (2002).
[CrossRef]

Roussev, R. V.

Route, R. K.

Weis, R. S.

R. S. Weis, T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Appl. Phys. A

R. S. Weis, T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Appl. Phys. Lett.

J. M. E. Harper, J. J. Cuomo, H. T. G. Hentzell, “Quantitative ion beam process for the deposition of compound thin films,” Appl. Phys. Lett. 43, 547–549 (1983).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Amoroso, A. Di Falco, G. Leo, G. Assanto, A. Parisi, A. Cino, S. Riva Sanseverino, “Second harmonic generation in coupled LiNbO3 waveguides by reverse proton exchange,” IEEE Photon. Technol. Lett. 15, 443–445 (2002).
[CrossRef]

A. Di Lallo, C. Conti, A. Cino, G. Assanto, “Efficient frequency doubling in reverse proton exchanged lithium niobate waveguides,” IEEE Photon. Technol. Lett. 13, 323–325 (2001).
[CrossRef]

Opt. Exp.

A. Di Lallo, A. Cino, C. Conti, G. Assanto, “Second harmonic generation in reverse proton exchanged lithium niobate waveguides,” Opt. Exp. 8, 232–237 (2001), http://www.opticsexpress.org .
[CrossRef]

Opt. Lett.

Surf. Coat. Technol.

D. M. Mattox, “Ion plating—past, present and future,” Surf. Coat. Technol. 133-134, 517–521 (2000).
[CrossRef]

Other

H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984).

M. M. Fejer, “Nonlinear optical frequency conversion: material requirements, engineered materials, and quasi-phasematching,” in Beam Shaping and Control with Nonlinear Optics, F. Kajzar, R. Reinisch, eds. (Plenum, New York, 1998), pp. 375–406.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Poling dots on the surface of a sample after a metal mask has been removed by HF etching.

Fig. 2
Fig. 2

Etching rates of the silica layer when the oxygen pressure is varied during deposition.

Fig. 3
Fig. 3

Comparison of the initial channel opening in the silica mask and the RPE waveguide.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d/d0=1+q/h2/1+r/h2+q/h2-2r/h×q/hcosθn+3/2-kr2.

Metrics