Abstract

A new method of developing optical fiber pressure sensors by use of a fiber loop ringdown scheme is described. The fiber loop ringdown system is characterized in terms of the ringdown baseline stability, fiber transmission loss, and fiber refractive index. The overall sensor performance is demonstrated by use of sensing forces applied to the sensor head. The current device can sense pressures in the range of 0 to 9.8 × 106 Pa, converted approximately from the applied forces. The sensor’s linear response, repeatability, detection sensitivity, measuring dynamic range, and temperature tolerance are explored.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology, Vols. III and IV (Kluwer Academic, Dordrecht, The Netherlands, 1999).
  2. K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology, Vol. 2 (Chapman & Hall, London, 1998).
  3. For example, J. Greenwood, G. Dobre, “Optical pressure sensor for an aeronautical application using white light interferometry,” in Micro-Opto-Electro-Mechanical Systems, R. R. Syms, ed., Proc. SPIE4075, 94–100 (2000).
    [CrossRef]
  4. T. Bae, R. A. Atkins, H. F. Taylor, W. N. Gibler, “Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines,” Appl. Opt. 42, 1003–1007 (2003).
    [CrossRef] [PubMed]
  5. R. A. Atkins, C. E. Lee, H. F. Taylor, “Fiber-optic in-cylinder pressure sensor developed,” Diesel & Gas Turbine World Wide, April1995, http://www.fiberdynamics.com/pdf/dies_gas0595.pdf .
  6. D. McCarthy, ed., “Fiber optic sensor performs under pressure,” Photonics Technology World in Photonic Spectra, May1999, http://www.photonics.com/spectra/tech/XQ/ASP/techid.556/QX/read.htm .
  7. For example, PS-100 fiber optic pressure sensor (Fiber Dynamics, Inc., Bryan, Tex.), http://www.fiberdynamics.com .
  8. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).
  9. Y. Zhao, C. Yu, Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Opt. Laser Technol. 36, 39–42 (2004).
    [CrossRef]
  10. S. T. Oh, W. T. Han, U. C. Paek, Y. Chung, “Discrimination of temperature and strain with a single FBG on the birefringence effect,” Opt. Exp. 12, 724–729 (2004), http://www.opticsexpress.org .
    [CrossRef]
  11. S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Strain-independent temperature measurement using a type-I and type-IIA optical fiber Bragg grating combination,” Rev. Sci. Instrum. 75, 1327–1331 (2004).
    [CrossRef]
  12. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  13. A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
    [CrossRef]
  14. K. K. Lehmann, P. Rabinowitz, “High-finesse optical resonator for cavity ring-down spectroscopy based upon Brewster’s angle prism retrorefrectors,” U.S. patent5,973,864 (26October1999).
  15. T. von. Lerber, M. W. Sigrist, “Time constant extraction from noisy cavity ring-down signals,” Chem. Phys. Lett. 353, 131–137 (2002).
    [CrossRef]
  16. T. von. Lerber, M. W. Sigrist, “Cavity ring-down principle for fiber optic resonators: experimental realization of bending loss and evanescent-field sensing,” Appl. Opt. 41, 3567–3575 (2002).
    [CrossRef]
  17. D. E. Vogler, M. G. Muller, M. W. Sigrist, “Fiber-optical cavity sensing of hydrogen diffusion,” Appl. Opt. 42, 5413–5417 (2004).
    [CrossRef]
  18. M. Gupta, Hong Jiao, A. O’Keefe, “Cavity-enhanced spectroscopy in optical fibers,” Opt. Lett. 27, 1878–1880 (2002).
    [CrossRef]
  19. G. Stewart, K. Atherton, H. Yu, B. Culshaw, “Investigation of an optical fibre amplifier loop for intracavity and cavity ring-down loss measurements,” Meas. Sci. Technol. 12, 843–849 (2001).
    [CrossRef]
  20. R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002).
    [CrossRef]
  21. Z. Tong, M. Jakubinek, A. Wright, A. Gillies, H.-P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (1997).
    [CrossRef]
  22. K. K. Lehmann, P. B. Tarsa, P. Rabinowitz, “Fiber-optic based cavity ring-down spectroscopy apparatus,” U.S. patent application number 20030107739 (patent pending).
  23. P. B. Tarsa, P. Rabinowitz, K. K. Lehmann, “Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy,” Chem. Phys. Lett. 383, 297–303 (2004).
    [CrossRef]
  24. Chuji Wang, S. T. Scherrer, “Fiber ringdown pressure sensors,” Opt. Lett. 29, 352–354 (2004).
    [PubMed]
  25. X. C. Li, F. Prinz, J. Seim, “Thermal behavior of a metal embedded fiber Bragg grating sensor,” Smart Mater. Struct. 10, 575–579 (2001).
    [CrossRef]

2004 (6)

Y. Zhao, C. Yu, Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Opt. Laser Technol. 36, 39–42 (2004).
[CrossRef]

S. T. Oh, W. T. Han, U. C. Paek, Y. Chung, “Discrimination of temperature and strain with a single FBG on the birefringence effect,” Opt. Exp. 12, 724–729 (2004), http://www.opticsexpress.org .
[CrossRef]

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Strain-independent temperature measurement using a type-I and type-IIA optical fiber Bragg grating combination,” Rev. Sci. Instrum. 75, 1327–1331 (2004).
[CrossRef]

D. E. Vogler, M. G. Muller, M. W. Sigrist, “Fiber-optical cavity sensing of hydrogen diffusion,” Appl. Opt. 42, 5413–5417 (2004).
[CrossRef]

P. B. Tarsa, P. Rabinowitz, K. K. Lehmann, “Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy,” Chem. Phys. Lett. 383, 297–303 (2004).
[CrossRef]

Chuji Wang, S. T. Scherrer, “Fiber ringdown pressure sensors,” Opt. Lett. 29, 352–354 (2004).
[PubMed]

2003 (1)

2002 (4)

T. von. Lerber, M. W. Sigrist, “Time constant extraction from noisy cavity ring-down signals,” Chem. Phys. Lett. 353, 131–137 (2002).
[CrossRef]

T. von. Lerber, M. W. Sigrist, “Cavity ring-down principle for fiber optic resonators: experimental realization of bending loss and evanescent-field sensing,” Appl. Opt. 41, 3567–3575 (2002).
[CrossRef]

M. Gupta, Hong Jiao, A. O’Keefe, “Cavity-enhanced spectroscopy in optical fibers,” Opt. Lett. 27, 1878–1880 (2002).
[CrossRef]

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002).
[CrossRef]

2001 (2)

G. Stewart, K. Atherton, H. Yu, B. Culshaw, “Investigation of an optical fibre amplifier loop for intracavity and cavity ring-down loss measurements,” Meas. Sci. Technol. 12, 843–849 (2001).
[CrossRef]

X. C. Li, F. Prinz, J. Seim, “Thermal behavior of a metal embedded fiber Bragg grating sensor,” Smart Mater. Struct. 10, 575–579 (2001).
[CrossRef]

1997 (2)

Z. Tong, M. Jakubinek, A. Wright, A. Gillies, H.-P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (1997).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

1988 (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Atherton, K.

G. Stewart, K. Atherton, H. Yu, B. Culshaw, “Investigation of an optical fibre amplifier loop for intracavity and cavity ring-down loss measurements,” Meas. Sci. Technol. 12, 843–849 (2001).
[CrossRef]

Atkins, R. A.

Bae, T.

Baxter, G. W.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Strain-independent temperature measurement using a type-I and type-IIA optical fiber Bragg grating combination,” Rev. Sci. Instrum. 75, 1327–1331 (2004).
[CrossRef]

Brown, R. S.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002).
[CrossRef]

Chuji Wang,

Chung, Y.

S. T. Oh, W. T. Han, U. C. Paek, Y. Chung, “Discrimination of temperature and strain with a single FBG on the birefringence effect,” Opt. Exp. 12, 724–729 (2004), http://www.opticsexpress.org .
[CrossRef]

Collins, S. F.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Strain-independent temperature measurement using a type-I and type-IIA optical fiber Bragg grating combination,” Rev. Sci. Instrum. 75, 1327–1331 (2004).
[CrossRef]

Culshaw, B.

G. Stewart, K. Atherton, H. Yu, B. Culshaw, “Investigation of an optical fibre amplifier loop for intracavity and cavity ring-down loss measurements,” Meas. Sci. Technol. 12, 843–849 (2001).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Dobre, G.

For example, J. Greenwood, G. Dobre, “Optical pressure sensor for an aeronautical application using white light interferometry,” in Micro-Opto-Electro-Mechanical Systems, R. R. Syms, ed., Proc. SPIE4075, 94–100 (2000).
[CrossRef]

Dussardier, B.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Strain-independent temperature measurement using a type-I and type-IIA optical fiber Bragg grating combination,” Rev. Sci. Instrum. 75, 1327–1331 (2004).
[CrossRef]

Gibler, W. N.

Gillies, A.

Z. Tong, M. Jakubinek, A. Wright, A. Gillies, H.-P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (1997).
[CrossRef]

Grattan, K. T. V.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Strain-independent temperature measurement using a type-I and type-IIA optical fiber Bragg grating combination,” Rev. Sci. Instrum. 75, 1327–1331 (2004).
[CrossRef]

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology, Vols. III and IV (Kluwer Academic, Dordrecht, The Netherlands, 1999).

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology, Vol. 2 (Chapman & Hall, London, 1998).

Greenwood, J.

For example, J. Greenwood, G. Dobre, “Optical pressure sensor for an aeronautical application using white light interferometry,” in Micro-Opto-Electro-Mechanical Systems, R. R. Syms, ed., Proc. SPIE4075, 94–100 (2000).
[CrossRef]

Gupta, M.

Han, W. T.

S. T. Oh, W. T. Han, U. C. Paek, Y. Chung, “Discrimination of temperature and strain with a single FBG on the birefringence effect,” Opt. Exp. 12, 724–729 (2004), http://www.opticsexpress.org .
[CrossRef]

Hudgens, J. W.

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

Huie, R. E.

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

Jakubinek, M.

Z. Tong, M. Jakubinek, A. Wright, A. Gillies, H.-P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (1997).
[CrossRef]

Jiao, Hong

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).

Kozin, I.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002).
[CrossRef]

Lehmann, K. K.

P. B. Tarsa, P. Rabinowitz, K. K. Lehmann, “Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy,” Chem. Phys. Lett. 383, 297–303 (2004).
[CrossRef]

K. K. Lehmann, P. B. Tarsa, P. Rabinowitz, “Fiber-optic based cavity ring-down spectroscopy apparatus,” U.S. patent application number 20030107739 (patent pending).

K. K. Lehmann, P. Rabinowitz, “High-finesse optical resonator for cavity ring-down spectroscopy based upon Brewster’s angle prism retrorefrectors,” U.S. patent5,973,864 (26October1999).

Lerber, T. von.

Li, X. C.

X. C. Li, F. Prinz, J. Seim, “Thermal behavior of a metal embedded fiber Bragg grating sensor,” Smart Mater. Struct. 10, 575–579 (2001).
[CrossRef]

Liao, Y.

Y. Zhao, C. Yu, Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Opt. Laser Technol. 36, 39–42 (2004).
[CrossRef]

Loock, H.-P.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002).
[CrossRef]

Z. Tong, M. Jakubinek, A. Wright, A. Gillies, H.-P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (1997).
[CrossRef]

Meggitt, B. T.

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology, Vol. 2 (Chapman & Hall, London, 1998).

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology, Vols. III and IV (Kluwer Academic, Dordrecht, The Netherlands, 1999).

Monnom, G.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Strain-independent temperature measurement using a type-I and type-IIA optical fiber Bragg grating combination,” Rev. Sci. Instrum. 75, 1327–1331 (2004).
[CrossRef]

Muller, M. G.

O’Keefe, A.

M. Gupta, Hong Jiao, A. O’Keefe, “Cavity-enhanced spectroscopy in optical fibers,” Opt. Lett. 27, 1878–1880 (2002).
[CrossRef]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Oh, S. T.

S. T. Oh, W. T. Han, U. C. Paek, Y. Chung, “Discrimination of temperature and strain with a single FBG on the birefringence effect,” Opt. Exp. 12, 724–729 (2004), http://www.opticsexpress.org .
[CrossRef]

Oleschuk, R. D.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002).
[CrossRef]

Paek, U. C.

S. T. Oh, W. T. Han, U. C. Paek, Y. Chung, “Discrimination of temperature and strain with a single FBG on the birefringence effect,” Opt. Exp. 12, 724–729 (2004), http://www.opticsexpress.org .
[CrossRef]

Pal, S.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Strain-independent temperature measurement using a type-I and type-IIA optical fiber Bragg grating combination,” Rev. Sci. Instrum. 75, 1327–1331 (2004).
[CrossRef]

Pipino, A. C. R.

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

Prinz, F.

X. C. Li, F. Prinz, J. Seim, “Thermal behavior of a metal embedded fiber Bragg grating sensor,” Smart Mater. Struct. 10, 575–579 (2001).
[CrossRef]

Rabinowitz, P.

P. B. Tarsa, P. Rabinowitz, K. K. Lehmann, “Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy,” Chem. Phys. Lett. 383, 297–303 (2004).
[CrossRef]

K. K. Lehmann, P. B. Tarsa, P. Rabinowitz, “Fiber-optic based cavity ring-down spectroscopy apparatus,” U.S. patent application number 20030107739 (patent pending).

K. K. Lehmann, P. Rabinowitz, “High-finesse optical resonator for cavity ring-down spectroscopy based upon Brewster’s angle prism retrorefrectors,” U.S. patent5,973,864 (26October1999).

Scherrer, S. T.

Seim, J.

X. C. Li, F. Prinz, J. Seim, “Thermal behavior of a metal embedded fiber Bragg grating sensor,” Smart Mater. Struct. 10, 575–579 (2001).
[CrossRef]

Sigrist, M. W.

Stewart, G.

G. Stewart, K. Atherton, H. Yu, B. Culshaw, “Investigation of an optical fibre amplifier loop for intracavity and cavity ring-down loss measurements,” Meas. Sci. Technol. 12, 843–849 (2001).
[CrossRef]

Sun, T.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Strain-independent temperature measurement using a type-I and type-IIA optical fiber Bragg grating combination,” Rev. Sci. Instrum. 75, 1327–1331 (2004).
[CrossRef]

Tarsa, P. B.

P. B. Tarsa, P. Rabinowitz, K. K. Lehmann, “Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy,” Chem. Phys. Lett. 383, 297–303 (2004).
[CrossRef]

K. K. Lehmann, P. B. Tarsa, P. Rabinowitz, “Fiber-optic based cavity ring-down spectroscopy apparatus,” U.S. patent application number 20030107739 (patent pending).

Taylor, H. F.

Tong, Z.

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002).
[CrossRef]

Z. Tong, M. Jakubinek, A. Wright, A. Gillies, H.-P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (1997).
[CrossRef]

Vogler, D. E.

Wade, S. A.

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Strain-independent temperature measurement using a type-I and type-IIA optical fiber Bragg grating combination,” Rev. Sci. Instrum. 75, 1327–1331 (2004).
[CrossRef]

Wright, A.

Z. Tong, M. Jakubinek, A. Wright, A. Gillies, H.-P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (1997).
[CrossRef]

Yu, C.

Y. Zhao, C. Yu, Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Opt. Laser Technol. 36, 39–42 (2004).
[CrossRef]

Yu, H.

G. Stewart, K. Atherton, H. Yu, B. Culshaw, “Investigation of an optical fibre amplifier loop for intracavity and cavity ring-down loss measurements,” Meas. Sci. Technol. 12, 843–849 (2001).
[CrossRef]

Zhao, Y.

Y. Zhao, C. Yu, Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Opt. Laser Technol. 36, 39–42 (2004).
[CrossRef]

Appl. Opt. (3)

Chem. Phys. Lett. (2)

T. von. Lerber, M. W. Sigrist, “Time constant extraction from noisy cavity ring-down signals,” Chem. Phys. Lett. 353, 131–137 (2002).
[CrossRef]

P. B. Tarsa, P. Rabinowitz, K. K. Lehmann, “Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy,” Chem. Phys. Lett. 383, 297–303 (2004).
[CrossRef]

J. Chem. Phys. (1)

R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

G. Stewart, K. Atherton, H. Yu, B. Culshaw, “Investigation of an optical fibre amplifier loop for intracavity and cavity ring-down loss measurements,” Meas. Sci. Technol. 12, 843–849 (2001).
[CrossRef]

Opt. Exp. (1)

S. T. Oh, W. T. Han, U. C. Paek, Y. Chung, “Discrimination of temperature and strain with a single FBG on the birefringence effect,” Opt. Exp. 12, 724–729 (2004), http://www.opticsexpress.org .
[CrossRef]

Opt. Laser Technol. (1)

Y. Zhao, C. Yu, Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Opt. Laser Technol. 36, 39–42 (2004).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (4)

Z. Tong, M. Jakubinek, A. Wright, A. Gillies, H.-P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (1997).
[CrossRef]

S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Strain-independent temperature measurement using a type-I and type-IIA optical fiber Bragg grating combination,” Rev. Sci. Instrum. 75, 1327–1331 (2004).
[CrossRef]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997).
[CrossRef]

Smart Mater. Struct. (1)

X. C. Li, F. Prinz, J. Seim, “Thermal behavior of a metal embedded fiber Bragg grating sensor,” Smart Mater. Struct. 10, 575–579 (2001).
[CrossRef]

Other (9)

K. K. Lehmann, P. Rabinowitz, “High-finesse optical resonator for cavity ring-down spectroscopy based upon Brewster’s angle prism retrorefrectors,” U.S. patent5,973,864 (26October1999).

R. A. Atkins, C. E. Lee, H. F. Taylor, “Fiber-optic in-cylinder pressure sensor developed,” Diesel & Gas Turbine World Wide, April1995, http://www.fiberdynamics.com/pdf/dies_gas0595.pdf .

D. McCarthy, ed., “Fiber optic sensor performs under pressure,” Photonics Technology World in Photonic Spectra, May1999, http://www.photonics.com/spectra/tech/XQ/ASP/techid.556/QX/read.htm .

For example, PS-100 fiber optic pressure sensor (Fiber Dynamics, Inc., Bryan, Tex.), http://www.fiberdynamics.com .

R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).

K. K. Lehmann, P. B. Tarsa, P. Rabinowitz, “Fiber-optic based cavity ring-down spectroscopy apparatus,” U.S. patent application number 20030107739 (patent pending).

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology, Vols. III and IV (Kluwer Academic, Dordrecht, The Netherlands, 1999).

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology, Vol. 2 (Chapman & Hall, London, 1998).

For example, J. Greenwood, G. Dobre, “Optical pressure sensor for an aeronautical application using white light interferometry,” in Micro-Opto-Electro-Mechanical Systems, R. R. Syms, ed., Proc. SPIE4075, 94–100 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the fiber loop ringdown system.

Fig. 2
Fig. 2

Typical fiber loop ringdown decay behavior. (a) Ringdown waveform from which the measured round-trip time of the light in the loop is 298 ns. (b) Linear fitting of the logarithm of the signal intensity (I) shown in the waveform; the measured ringdown time is 4.11 μs.

Fig. 3
Fig. 3

Typical scan testing the ringdown baseline stability of the fiber loop system. Each data point is the average of 500 ringdown events. The averaged ringdown time is 4.11 μs, with a standard deviation of 0.0049 μs; thus the baseline stability is 0.1%.

Fig. 4
Fig. 4

Pressure response curve of the sensor device. From the left to the right, the applied pressure increases from zero to the maximum and decreases from the maximum to zero. The y axis indicates the change in the ringdown times, and the x axis represents the actual experimental time. The experimental time at each pressure point was not intentionally controlled the same in the testing. H:M:S, hours:minutes:seconds.

Fig. 5
Fig. 5

Sensor device showing a linear response to pressure. (a) and (b) were obtained by use of the data presented in the left- and the right-hand sides of the lines, respectively. Squares and lines denote the experimental data and the fitted lines, respectively.

Fig. 6
Fig. 6

Sensor device showing a low-detection sensitivity but an increased measuring dynamic range by use of a different configuration of the sensor head in which the fiber jacket remains in the section of fiber used in the sensor head.

Tables (1)

Tables Icon

Table 1 Specifications of Losses of the Fiber Loop when a Fused-Silica Single-Mode Fiber is Useda

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

dIdt=-IAcnL,
I=I0 exp-cnL At.
τ0=nLcA.
tr=nLc
A=trτ0.
τ=nLcA+B,
1τ-1τ0=cnL B=cβlSnL P=kP,
ΔAA=Δττ,

Metrics