Abstract

An all-optical system for the addition of binary numbers is proposed in which input binary digits are encoded by appropriate cells in two different planes and output binary digits are expressed as the presence (=1) or the absence (=0) of a light signal. The intensity-based optical xor and and logic operations are used here as basic building blocks. Nonlinear materials, appropriate cells (pixels), and other conventional optics are utilized in this system.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann, “What classical optics can do for the digital optical computer,” Appl. Opt. 25, 1543–1549 (1986).
    [CrossRef] [PubMed]
  2. M. Conner, G. Eichmann, “Multivatued logic for optical computing,” in Optical Computing, R. Arrathon, ed. (Marcel Dekker, New York, 1985), pp. 105–135.
  3. A. K. Dutta, S. Mukhopadhyay, A. Basuray, “Carry-less arithmetic operation of decimal numbers by signed digit substitution and its optical implementation,” Opt. Commun. 88, 87–91 (1992).
    [CrossRef]
  4. D. N. Das and, S. Mukhopadhyay, “Image edge detection and enhancement by an inversion operation,” Appl. Opt. 37, 8254–8257 (1998).
    [CrossRef]
  5. S. D. Smith, “Optical bistability, photonic logic, and optical computation,” Appl. Opt. 25, 1550–1564 (1986).
    [CrossRef] [PubMed]
  6. S. Mukhopadhyay, D. N. Das, P. Gosh, P. P. Das, “An implementation of all-optical digital matrix multiplication scheme with a non-linear material,” Opt. Eng. 40, 1998–2002 (2001).
    [CrossRef]
  7. D. A. B. Miller, M. H. Mozolowski, A. Miller, S. D. Smith, “Nonlinear optical effects in InSb with a c.w. CO laser,” Opt. Commun. 27, 133–136 (1978).
    [CrossRef]
  8. D. Weaire, B. S. Wherrett, D. A. B. Miller, S. D. Smith, “Effect of low-power nonlinear refraction on laser-beam propagation in InSb,” Opt. Lett. 4, 331–333 (1979).
    [CrossRef] [PubMed]
  9. M. A. Karim, A. A. S. Awwal, Optical Computing: An Introduction (Wiley, New York, 2003), Chap. 3, pp. 35–56.
  10. L. K. Cotter, T. J. Drabik, R. J. Dillon, M. A. Handschy, “Ferroelectric-liquid-crystal/silicon-integrated circuit spatial light modulator,” Opt. Lett. 15(5), 291–293 (1990).
    [CrossRef]

2001

S. Mukhopadhyay, D. N. Das, P. Gosh, P. P. Das, “An implementation of all-optical digital matrix multiplication scheme with a non-linear material,” Opt. Eng. 40, 1998–2002 (2001).
[CrossRef]

1998

1992

A. K. Dutta, S. Mukhopadhyay, A. Basuray, “Carry-less arithmetic operation of decimal numbers by signed digit substitution and its optical implementation,” Opt. Commun. 88, 87–91 (1992).
[CrossRef]

1990

1986

1979

1978

D. A. B. Miller, M. H. Mozolowski, A. Miller, S. D. Smith, “Nonlinear optical effects in InSb with a c.w. CO laser,” Opt. Commun. 27, 133–136 (1978).
[CrossRef]

Awwal, A. A. S.

M. A. Karim, A. A. S. Awwal, Optical Computing: An Introduction (Wiley, New York, 2003), Chap. 3, pp. 35–56.

Basuray, A.

A. K. Dutta, S. Mukhopadhyay, A. Basuray, “Carry-less arithmetic operation of decimal numbers by signed digit substitution and its optical implementation,” Opt. Commun. 88, 87–91 (1992).
[CrossRef]

Conner, M.

M. Conner, G. Eichmann, “Multivatued logic for optical computing,” in Optical Computing, R. Arrathon, ed. (Marcel Dekker, New York, 1985), pp. 105–135.

Cotter, L. K.

Das, D. N.

S. Mukhopadhyay, D. N. Das, P. Gosh, P. P. Das, “An implementation of all-optical digital matrix multiplication scheme with a non-linear material,” Opt. Eng. 40, 1998–2002 (2001).
[CrossRef]

Das, P. P.

S. Mukhopadhyay, D. N. Das, P. Gosh, P. P. Das, “An implementation of all-optical digital matrix multiplication scheme with a non-linear material,” Opt. Eng. 40, 1998–2002 (2001).
[CrossRef]

Das and, D. N.

Dillon, R. J.

Drabik, T. J.

Dutta, A. K.

A. K. Dutta, S. Mukhopadhyay, A. Basuray, “Carry-less arithmetic operation of decimal numbers by signed digit substitution and its optical implementation,” Opt. Commun. 88, 87–91 (1992).
[CrossRef]

Eichmann, G.

M. Conner, G. Eichmann, “Multivatued logic for optical computing,” in Optical Computing, R. Arrathon, ed. (Marcel Dekker, New York, 1985), pp. 105–135.

Gosh, P.

S. Mukhopadhyay, D. N. Das, P. Gosh, P. P. Das, “An implementation of all-optical digital matrix multiplication scheme with a non-linear material,” Opt. Eng. 40, 1998–2002 (2001).
[CrossRef]

Handschy, M. A.

Karim, M. A.

M. A. Karim, A. A. S. Awwal, Optical Computing: An Introduction (Wiley, New York, 2003), Chap. 3, pp. 35–56.

Lohmann, A. W.

Miller, A.

D. A. B. Miller, M. H. Mozolowski, A. Miller, S. D. Smith, “Nonlinear optical effects in InSb with a c.w. CO laser,” Opt. Commun. 27, 133–136 (1978).
[CrossRef]

Miller, D. A. B.

D. Weaire, B. S. Wherrett, D. A. B. Miller, S. D. Smith, “Effect of low-power nonlinear refraction on laser-beam propagation in InSb,” Opt. Lett. 4, 331–333 (1979).
[CrossRef] [PubMed]

D. A. B. Miller, M. H. Mozolowski, A. Miller, S. D. Smith, “Nonlinear optical effects in InSb with a c.w. CO laser,” Opt. Commun. 27, 133–136 (1978).
[CrossRef]

Mozolowski, M. H.

D. A. B. Miller, M. H. Mozolowski, A. Miller, S. D. Smith, “Nonlinear optical effects in InSb with a c.w. CO laser,” Opt. Commun. 27, 133–136 (1978).
[CrossRef]

Mukhopadhyay, S.

S. Mukhopadhyay, D. N. Das, P. Gosh, P. P. Das, “An implementation of all-optical digital matrix multiplication scheme with a non-linear material,” Opt. Eng. 40, 1998–2002 (2001).
[CrossRef]

D. N. Das and, S. Mukhopadhyay, “Image edge detection and enhancement by an inversion operation,” Appl. Opt. 37, 8254–8257 (1998).
[CrossRef]

A. K. Dutta, S. Mukhopadhyay, A. Basuray, “Carry-less arithmetic operation of decimal numbers by signed digit substitution and its optical implementation,” Opt. Commun. 88, 87–91 (1992).
[CrossRef]

Smith, S. D.

Weaire, D.

Wherrett, B. S.

Appl. Opt.

Opt. Commun.

D. A. B. Miller, M. H. Mozolowski, A. Miller, S. D. Smith, “Nonlinear optical effects in InSb with a c.w. CO laser,” Opt. Commun. 27, 133–136 (1978).
[CrossRef]

A. K. Dutta, S. Mukhopadhyay, A. Basuray, “Carry-less arithmetic operation of decimal numbers by signed digit substitution and its optical implementation,” Opt. Commun. 88, 87–91 (1992).
[CrossRef]

Opt. Eng.

S. Mukhopadhyay, D. N. Das, P. Gosh, P. P. Das, “An implementation of all-optical digital matrix multiplication scheme with a non-linear material,” Opt. Eng. 40, 1998–2002 (2001).
[CrossRef]

Opt. Lett.

Other

M. A. Karim, A. A. S. Awwal, Optical Computing: An Introduction (Wiley, New York, 2003), Chap. 3, pp. 35–56.

M. Conner, G. Eichmann, “Multivatued logic for optical computing,” in Optical Computing, R. Arrathon, ed. (Marcel Dekker, New York, 1985), pp. 105–135.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Composite slab of linear and nonlinear media: n is the refractive index of the nonlinear material; n L is that of the linear material.

Fig. 2
Fig. 2

All-optical half-adder.

Fig. 3
Fig. 3

(a) Logic diagram of a digital full adder, (b) an all-optical full adder.

Fig. 4
Fig. 4

Binary number addition scheme.

Tables (2)

Tables Icon

Table 1 Optical Half-Adder

Tables Icon

Table 2 Optical Full Adder

Metrics