Abstract

Results are presented on the passive standoff detection and identification of chemical warfare (CW) liquid agents on surfaces by the Fourier-transform IR radiometry. This study was performed during surface contamination trials at Defence Research and Development Canada-Suffield in September 2002. The goal was to verify that passive long-wave IR spectrometric sensors can potentially remotely detect surfaces contaminated with CW agents. The passive sensor, the Compact Atmospheric Sounding Interferometer, was used in the trial to obtain laboratory and field measurements of CW liquid agents, HD and VX. The agents were applied to high-reflectivity surfaces of aluminum, low-reflectivity surfaces of Mylar, and several other materials including an armored personnel carrier. The field measurements were obtained at a standoff distance of 60 m from the target surfaces. Results indicate that liquid contaminant agents deposited on high-reflectivity surfaces can be detected, identified, and possibly quantified with passive sensors. For low-reflectivity surfaces the presence of the contaminants can usually be detected; however, their identification based on simple correlations with the absorption spectrum of the pure contaminant is not possible.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Ray, A. J. Sedlacek, M. Wu, “Ultraviolet mini-Raman lidar for standoff, in situ identification of chemical surface contaminants,” Rev. Sci. Instrum. 71, 3485–3489 (2000).
    [CrossRef]
  2. P. L. Ponsardin, N. S. Higdon, T. H. Chyba, W. T. Armstrong, A. J. Sedlacek, S. D. Christesen, A. Wong, “Expanding applications for surface-contaminants sensing using the laser interrogation of surface agents (LISA) technique, chemical, and biological standoff detection,” in Chemical and Biological Standoff Detection, J. O. Jensen, J-M. Theriault, eds., Proc. SPIE5268, 321–327 (2004).
    [CrossRef]
  3. S. H. Carlisle, L. W. Carr, V. E. Hatfield, P. L. Holland, D. L. McPherrin, R. E. Warren, “Advanced algorithm development for standoff NBC contamination,” CRDEC-CR-107 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., June1991).
  4. J. Leonelli, R. Warren, D. Walter, T. Podoll, D. J. Eckstrom, P. L. Holland, J. M. Moser, S. Boyd, J. E. Jones, J. E. van der Laan, J. W. Rice, “XD of remote detection of NBC contamination using IR,” ERDEC-CR-108 (Edgewood Research Development, and Engineering Center, Aberdeen Proving Ground, Md., March1994).
  5. A. Bell, C. Dyer, A. C. Jones, “Standoff liquid CW detection, chemical and biological standoff detection,” in Chemical and Biological Standoff Detection, J. O. Jensen, J.-M. Theriault, eds., Proc. SPIE5268, 302–309 (2004).
    [CrossRef]
  6. J.-M. Theriault, J. O. Jensen, A. Samuels, A. Ben-David, C. Gittins, W. Marinelli, “Detection of nonvolatile liquids on surfaces using passive infrared spectroradiometers,” in Proceedings of the Fifth Workshop on Standoff Detection for Chemical and Biological Defense, Williamsburg, Va., 24–28 September 2001 (n.p., 2001), Vol. 5, pp. 1–10.
  7. J.-M. Thériault, J. O. Jensen, A. Samuels, A. Ben-David, C. Gittins, W. Marinelli, “Passive standoff detection of surface contaminants: modeling the spectral radiance,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 1–10 (2001).
  8. J.-M. Thériault, J. Hancock, J. O. Jensen, E. Puckrin, F. D’Amico, “Passive standoff detection of liquid surface contaminants: recent results with CATSI,” in Chemical and Biological Standoff Detection, J. O. Jensen, J.-M. Theriault, eds., Proc. SPIE5268, 1–10 (2003).
  9. F. A. Jenkins, W. E. White, Fundamentals of Optics, 3rd ed. (McGraw-Hill, New York, 1957), p. 263.
  10. J.-M. Thériault, “Modeling the responsivity and self-emission of a double-beam Fourier-transform infrared interferometer,” Appl. Opt. 38, 505–515 (1999).
    [CrossRef]
  11. J.-M. Thériault, E. Puckrin, F. Bouffard, B. Déry, “Passive remote monitoring of chemical vapors by differential FTIR radiometry: results at a range of 1.5 km,” Appl. Opt. 43, 1425–1434 (2004).
    [CrossRef] [PubMed]
  12. J.-M. Thériault, E. Puckrin, J. O. Jensen, “Passive standoff detection of BG aerosol by FTIR radiometry,” Appl. Opt. 41, 6696–6705 (2003).
    [CrossRef]
  13. D. F. Flanigan, “The spectral signatures of chemical agent vapors and aerosols,” CRDC-TR-85002 (U.S. Army Chemical Research, Development, and Engineering Center, U.S. Army Armament, Munitions and Chemical Command, Aberdeen Proving Ground, Md., 21005-5066, April1985) (and personal communication, 1985).

2004

2003

J.-M. Thériault, E. Puckrin, J. O. Jensen, “Passive standoff detection of BG aerosol by FTIR radiometry,” Appl. Opt. 41, 6696–6705 (2003).
[CrossRef]

2000

M. D. Ray, A. J. Sedlacek, M. Wu, “Ultraviolet mini-Raman lidar for standoff, in situ identification of chemical surface contaminants,” Rev. Sci. Instrum. 71, 3485–3489 (2000).
[CrossRef]

1999

Armstrong, W. T.

P. L. Ponsardin, N. S. Higdon, T. H. Chyba, W. T. Armstrong, A. J. Sedlacek, S. D. Christesen, A. Wong, “Expanding applications for surface-contaminants sensing using the laser interrogation of surface agents (LISA) technique, chemical, and biological standoff detection,” in Chemical and Biological Standoff Detection, J. O. Jensen, J-M. Theriault, eds., Proc. SPIE5268, 321–327 (2004).
[CrossRef]

Bell, A.

A. Bell, C. Dyer, A. C. Jones, “Standoff liquid CW detection, chemical and biological standoff detection,” in Chemical and Biological Standoff Detection, J. O. Jensen, J.-M. Theriault, eds., Proc. SPIE5268, 302–309 (2004).
[CrossRef]

Ben-David, A.

J.-M. Theriault, J. O. Jensen, A. Samuels, A. Ben-David, C. Gittins, W. Marinelli, “Detection of nonvolatile liquids on surfaces using passive infrared spectroradiometers,” in Proceedings of the Fifth Workshop on Standoff Detection for Chemical and Biological Defense, Williamsburg, Va., 24–28 September 2001 (n.p., 2001), Vol. 5, pp. 1–10.

J.-M. Thériault, J. O. Jensen, A. Samuels, A. Ben-David, C. Gittins, W. Marinelli, “Passive standoff detection of surface contaminants: modeling the spectral radiance,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 1–10 (2001).

Bouffard, F.

Boyd, S.

J. Leonelli, R. Warren, D. Walter, T. Podoll, D. J. Eckstrom, P. L. Holland, J. M. Moser, S. Boyd, J. E. Jones, J. E. van der Laan, J. W. Rice, “XD of remote detection of NBC contamination using IR,” ERDEC-CR-108 (Edgewood Research Development, and Engineering Center, Aberdeen Proving Ground, Md., March1994).

Carlisle, S. H.

S. H. Carlisle, L. W. Carr, V. E. Hatfield, P. L. Holland, D. L. McPherrin, R. E. Warren, “Advanced algorithm development for standoff NBC contamination,” CRDEC-CR-107 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., June1991).

Carr, L. W.

S. H. Carlisle, L. W. Carr, V. E. Hatfield, P. L. Holland, D. L. McPherrin, R. E. Warren, “Advanced algorithm development for standoff NBC contamination,” CRDEC-CR-107 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., June1991).

Christesen, S. D.

P. L. Ponsardin, N. S. Higdon, T. H. Chyba, W. T. Armstrong, A. J. Sedlacek, S. D. Christesen, A. Wong, “Expanding applications for surface-contaminants sensing using the laser interrogation of surface agents (LISA) technique, chemical, and biological standoff detection,” in Chemical and Biological Standoff Detection, J. O. Jensen, J-M. Theriault, eds., Proc. SPIE5268, 321–327 (2004).
[CrossRef]

Chyba, T. H.

P. L. Ponsardin, N. S. Higdon, T. H. Chyba, W. T. Armstrong, A. J. Sedlacek, S. D. Christesen, A. Wong, “Expanding applications for surface-contaminants sensing using the laser interrogation of surface agents (LISA) technique, chemical, and biological standoff detection,” in Chemical and Biological Standoff Detection, J. O. Jensen, J-M. Theriault, eds., Proc. SPIE5268, 321–327 (2004).
[CrossRef]

D’Amico, F.

J.-M. Thériault, J. Hancock, J. O. Jensen, E. Puckrin, F. D’Amico, “Passive standoff detection of liquid surface contaminants: recent results with CATSI,” in Chemical and Biological Standoff Detection, J. O. Jensen, J.-M. Theriault, eds., Proc. SPIE5268, 1–10 (2003).

Déry, B.

Dyer, C.

A. Bell, C. Dyer, A. C. Jones, “Standoff liquid CW detection, chemical and biological standoff detection,” in Chemical and Biological Standoff Detection, J. O. Jensen, J.-M. Theriault, eds., Proc. SPIE5268, 302–309 (2004).
[CrossRef]

Eckstrom, D. J.

J. Leonelli, R. Warren, D. Walter, T. Podoll, D. J. Eckstrom, P. L. Holland, J. M. Moser, S. Boyd, J. E. Jones, J. E. van der Laan, J. W. Rice, “XD of remote detection of NBC contamination using IR,” ERDEC-CR-108 (Edgewood Research Development, and Engineering Center, Aberdeen Proving Ground, Md., March1994).

Flanigan, D. F.

D. F. Flanigan, “The spectral signatures of chemical agent vapors and aerosols,” CRDC-TR-85002 (U.S. Army Chemical Research, Development, and Engineering Center, U.S. Army Armament, Munitions and Chemical Command, Aberdeen Proving Ground, Md., 21005-5066, April1985) (and personal communication, 1985).

Gittins, C.

J.-M. Thériault, J. O. Jensen, A. Samuels, A. Ben-David, C. Gittins, W. Marinelli, “Passive standoff detection of surface contaminants: modeling the spectral radiance,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 1–10 (2001).

J.-M. Theriault, J. O. Jensen, A. Samuels, A. Ben-David, C. Gittins, W. Marinelli, “Detection of nonvolatile liquids on surfaces using passive infrared spectroradiometers,” in Proceedings of the Fifth Workshop on Standoff Detection for Chemical and Biological Defense, Williamsburg, Va., 24–28 September 2001 (n.p., 2001), Vol. 5, pp. 1–10.

Hancock, J.

J.-M. Thériault, J. Hancock, J. O. Jensen, E. Puckrin, F. D’Amico, “Passive standoff detection of liquid surface contaminants: recent results with CATSI,” in Chemical and Biological Standoff Detection, J. O. Jensen, J.-M. Theriault, eds., Proc. SPIE5268, 1–10 (2003).

Hatfield, V. E.

S. H. Carlisle, L. W. Carr, V. E. Hatfield, P. L. Holland, D. L. McPherrin, R. E. Warren, “Advanced algorithm development for standoff NBC contamination,” CRDEC-CR-107 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., June1991).

Higdon, N. S.

P. L. Ponsardin, N. S. Higdon, T. H. Chyba, W. T. Armstrong, A. J. Sedlacek, S. D. Christesen, A. Wong, “Expanding applications for surface-contaminants sensing using the laser interrogation of surface agents (LISA) technique, chemical, and biological standoff detection,” in Chemical and Biological Standoff Detection, J. O. Jensen, J-M. Theriault, eds., Proc. SPIE5268, 321–327 (2004).
[CrossRef]

Holland, P. L.

S. H. Carlisle, L. W. Carr, V. E. Hatfield, P. L. Holland, D. L. McPherrin, R. E. Warren, “Advanced algorithm development for standoff NBC contamination,” CRDEC-CR-107 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., June1991).

J. Leonelli, R. Warren, D. Walter, T. Podoll, D. J. Eckstrom, P. L. Holland, J. M. Moser, S. Boyd, J. E. Jones, J. E. van der Laan, J. W. Rice, “XD of remote detection of NBC contamination using IR,” ERDEC-CR-108 (Edgewood Research Development, and Engineering Center, Aberdeen Proving Ground, Md., March1994).

Jenkins, F. A.

F. A. Jenkins, W. E. White, Fundamentals of Optics, 3rd ed. (McGraw-Hill, New York, 1957), p. 263.

Jensen, J. O.

J.-M. Thériault, E. Puckrin, J. O. Jensen, “Passive standoff detection of BG aerosol by FTIR radiometry,” Appl. Opt. 41, 6696–6705 (2003).
[CrossRef]

J.-M. Thériault, J. Hancock, J. O. Jensen, E. Puckrin, F. D’Amico, “Passive standoff detection of liquid surface contaminants: recent results with CATSI,” in Chemical and Biological Standoff Detection, J. O. Jensen, J.-M. Theriault, eds., Proc. SPIE5268, 1–10 (2003).

J.-M. Theriault, J. O. Jensen, A. Samuels, A. Ben-David, C. Gittins, W. Marinelli, “Detection of nonvolatile liquids on surfaces using passive infrared spectroradiometers,” in Proceedings of the Fifth Workshop on Standoff Detection for Chemical and Biological Defense, Williamsburg, Va., 24–28 September 2001 (n.p., 2001), Vol. 5, pp. 1–10.

J.-M. Thériault, J. O. Jensen, A. Samuels, A. Ben-David, C. Gittins, W. Marinelli, “Passive standoff detection of surface contaminants: modeling the spectral radiance,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 1–10 (2001).

Jones, A. C.

A. Bell, C. Dyer, A. C. Jones, “Standoff liquid CW detection, chemical and biological standoff detection,” in Chemical and Biological Standoff Detection, J. O. Jensen, J.-M. Theriault, eds., Proc. SPIE5268, 302–309 (2004).
[CrossRef]

Jones, J. E.

J. Leonelli, R. Warren, D. Walter, T. Podoll, D. J. Eckstrom, P. L. Holland, J. M. Moser, S. Boyd, J. E. Jones, J. E. van der Laan, J. W. Rice, “XD of remote detection of NBC contamination using IR,” ERDEC-CR-108 (Edgewood Research Development, and Engineering Center, Aberdeen Proving Ground, Md., March1994).

Leonelli, J.

J. Leonelli, R. Warren, D. Walter, T. Podoll, D. J. Eckstrom, P. L. Holland, J. M. Moser, S. Boyd, J. E. Jones, J. E. van der Laan, J. W. Rice, “XD of remote detection of NBC contamination using IR,” ERDEC-CR-108 (Edgewood Research Development, and Engineering Center, Aberdeen Proving Ground, Md., March1994).

Marinelli, W.

J.-M. Thériault, J. O. Jensen, A. Samuels, A. Ben-David, C. Gittins, W. Marinelli, “Passive standoff detection of surface contaminants: modeling the spectral radiance,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 1–10 (2001).

J.-M. Theriault, J. O. Jensen, A. Samuels, A. Ben-David, C. Gittins, W. Marinelli, “Detection of nonvolatile liquids on surfaces using passive infrared spectroradiometers,” in Proceedings of the Fifth Workshop on Standoff Detection for Chemical and Biological Defense, Williamsburg, Va., 24–28 September 2001 (n.p., 2001), Vol. 5, pp. 1–10.

McPherrin, D. L.

S. H. Carlisle, L. W. Carr, V. E. Hatfield, P. L. Holland, D. L. McPherrin, R. E. Warren, “Advanced algorithm development for standoff NBC contamination,” CRDEC-CR-107 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., June1991).

Moser, J. M.

J. Leonelli, R. Warren, D. Walter, T. Podoll, D. J. Eckstrom, P. L. Holland, J. M. Moser, S. Boyd, J. E. Jones, J. E. van der Laan, J. W. Rice, “XD of remote detection of NBC contamination using IR,” ERDEC-CR-108 (Edgewood Research Development, and Engineering Center, Aberdeen Proving Ground, Md., March1994).

Podoll, T.

J. Leonelli, R. Warren, D. Walter, T. Podoll, D. J. Eckstrom, P. L. Holland, J. M. Moser, S. Boyd, J. E. Jones, J. E. van der Laan, J. W. Rice, “XD of remote detection of NBC contamination using IR,” ERDEC-CR-108 (Edgewood Research Development, and Engineering Center, Aberdeen Proving Ground, Md., March1994).

Ponsardin, P. L.

P. L. Ponsardin, N. S. Higdon, T. H. Chyba, W. T. Armstrong, A. J. Sedlacek, S. D. Christesen, A. Wong, “Expanding applications for surface-contaminants sensing using the laser interrogation of surface agents (LISA) technique, chemical, and biological standoff detection,” in Chemical and Biological Standoff Detection, J. O. Jensen, J-M. Theriault, eds., Proc. SPIE5268, 321–327 (2004).
[CrossRef]

Puckrin, E.

J.-M. Thériault, E. Puckrin, F. Bouffard, B. Déry, “Passive remote monitoring of chemical vapors by differential FTIR radiometry: results at a range of 1.5 km,” Appl. Opt. 43, 1425–1434 (2004).
[CrossRef] [PubMed]

J.-M. Thériault, E. Puckrin, J. O. Jensen, “Passive standoff detection of BG aerosol by FTIR radiometry,” Appl. Opt. 41, 6696–6705 (2003).
[CrossRef]

J.-M. Thériault, J. Hancock, J. O. Jensen, E. Puckrin, F. D’Amico, “Passive standoff detection of liquid surface contaminants: recent results with CATSI,” in Chemical and Biological Standoff Detection, J. O. Jensen, J.-M. Theriault, eds., Proc. SPIE5268, 1–10 (2003).

Ray, M. D.

M. D. Ray, A. J. Sedlacek, M. Wu, “Ultraviolet mini-Raman lidar for standoff, in situ identification of chemical surface contaminants,” Rev. Sci. Instrum. 71, 3485–3489 (2000).
[CrossRef]

Rice, J. W.

J. Leonelli, R. Warren, D. Walter, T. Podoll, D. J. Eckstrom, P. L. Holland, J. M. Moser, S. Boyd, J. E. Jones, J. E. van der Laan, J. W. Rice, “XD of remote detection of NBC contamination using IR,” ERDEC-CR-108 (Edgewood Research Development, and Engineering Center, Aberdeen Proving Ground, Md., March1994).

Samuels, A.

J.-M. Thériault, J. O. Jensen, A. Samuels, A. Ben-David, C. Gittins, W. Marinelli, “Passive standoff detection of surface contaminants: modeling the spectral radiance,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 1–10 (2001).

J.-M. Theriault, J. O. Jensen, A. Samuels, A. Ben-David, C. Gittins, W. Marinelli, “Detection of nonvolatile liquids on surfaces using passive infrared spectroradiometers,” in Proceedings of the Fifth Workshop on Standoff Detection for Chemical and Biological Defense, Williamsburg, Va., 24–28 September 2001 (n.p., 2001), Vol. 5, pp. 1–10.

Sedlacek, A. J.

M. D. Ray, A. J. Sedlacek, M. Wu, “Ultraviolet mini-Raman lidar for standoff, in situ identification of chemical surface contaminants,” Rev. Sci. Instrum. 71, 3485–3489 (2000).
[CrossRef]

P. L. Ponsardin, N. S. Higdon, T. H. Chyba, W. T. Armstrong, A. J. Sedlacek, S. D. Christesen, A. Wong, “Expanding applications for surface-contaminants sensing using the laser interrogation of surface agents (LISA) technique, chemical, and biological standoff detection,” in Chemical and Biological Standoff Detection, J. O. Jensen, J-M. Theriault, eds., Proc. SPIE5268, 321–327 (2004).
[CrossRef]

Theriault, J.-M.

J.-M. Theriault, J. O. Jensen, A. Samuels, A. Ben-David, C. Gittins, W. Marinelli, “Detection of nonvolatile liquids on surfaces using passive infrared spectroradiometers,” in Proceedings of the Fifth Workshop on Standoff Detection for Chemical and Biological Defense, Williamsburg, Va., 24–28 September 2001 (n.p., 2001), Vol. 5, pp. 1–10.

Thériault, J.-M.

J.-M. Thériault, E. Puckrin, F. Bouffard, B. Déry, “Passive remote monitoring of chemical vapors by differential FTIR radiometry: results at a range of 1.5 km,” Appl. Opt. 43, 1425–1434 (2004).
[CrossRef] [PubMed]

J.-M. Thériault, E. Puckrin, J. O. Jensen, “Passive standoff detection of BG aerosol by FTIR radiometry,” Appl. Opt. 41, 6696–6705 (2003).
[CrossRef]

J.-M. Thériault, “Modeling the responsivity and self-emission of a double-beam Fourier-transform infrared interferometer,” Appl. Opt. 38, 505–515 (1999).
[CrossRef]

J.-M. Thériault, J. Hancock, J. O. Jensen, E. Puckrin, F. D’Amico, “Passive standoff detection of liquid surface contaminants: recent results with CATSI,” in Chemical and Biological Standoff Detection, J. O. Jensen, J.-M. Theriault, eds., Proc. SPIE5268, 1–10 (2003).

J.-M. Thériault, J. O. Jensen, A. Samuels, A. Ben-David, C. Gittins, W. Marinelli, “Passive standoff detection of surface contaminants: modeling the spectral radiance,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 1–10 (2001).

van der Laan, J. E.

J. Leonelli, R. Warren, D. Walter, T. Podoll, D. J. Eckstrom, P. L. Holland, J. M. Moser, S. Boyd, J. E. Jones, J. E. van der Laan, J. W. Rice, “XD of remote detection of NBC contamination using IR,” ERDEC-CR-108 (Edgewood Research Development, and Engineering Center, Aberdeen Proving Ground, Md., March1994).

Walter, D.

J. Leonelli, R. Warren, D. Walter, T. Podoll, D. J. Eckstrom, P. L. Holland, J. M. Moser, S. Boyd, J. E. Jones, J. E. van der Laan, J. W. Rice, “XD of remote detection of NBC contamination using IR,” ERDEC-CR-108 (Edgewood Research Development, and Engineering Center, Aberdeen Proving Ground, Md., March1994).

Warren, R.

J. Leonelli, R. Warren, D. Walter, T. Podoll, D. J. Eckstrom, P. L. Holland, J. M. Moser, S. Boyd, J. E. Jones, J. E. van der Laan, J. W. Rice, “XD of remote detection of NBC contamination using IR,” ERDEC-CR-108 (Edgewood Research Development, and Engineering Center, Aberdeen Proving Ground, Md., March1994).

Warren, R. E.

S. H. Carlisle, L. W. Carr, V. E. Hatfield, P. L. Holland, D. L. McPherrin, R. E. Warren, “Advanced algorithm development for standoff NBC contamination,” CRDEC-CR-107 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., June1991).

White, W. E.

F. A. Jenkins, W. E. White, Fundamentals of Optics, 3rd ed. (McGraw-Hill, New York, 1957), p. 263.

Wong, A.

P. L. Ponsardin, N. S. Higdon, T. H. Chyba, W. T. Armstrong, A. J. Sedlacek, S. D. Christesen, A. Wong, “Expanding applications for surface-contaminants sensing using the laser interrogation of surface agents (LISA) technique, chemical, and biological standoff detection,” in Chemical and Biological Standoff Detection, J. O. Jensen, J-M. Theriault, eds., Proc. SPIE5268, 321–327 (2004).
[CrossRef]

Wu, M.

M. D. Ray, A. J. Sedlacek, M. Wu, “Ultraviolet mini-Raman lidar for standoff, in situ identification of chemical surface contaminants,” Rev. Sci. Instrum. 71, 3485–3489 (2000).
[CrossRef]

Appl. Opt.

Rev. Sci. Instrum.

M. D. Ray, A. J. Sedlacek, M. Wu, “Ultraviolet mini-Raman lidar for standoff, in situ identification of chemical surface contaminants,” Rev. Sci. Instrum. 71, 3485–3489 (2000).
[CrossRef]

Other

P. L. Ponsardin, N. S. Higdon, T. H. Chyba, W. T. Armstrong, A. J. Sedlacek, S. D. Christesen, A. Wong, “Expanding applications for surface-contaminants sensing using the laser interrogation of surface agents (LISA) technique, chemical, and biological standoff detection,” in Chemical and Biological Standoff Detection, J. O. Jensen, J-M. Theriault, eds., Proc. SPIE5268, 321–327 (2004).
[CrossRef]

S. H. Carlisle, L. W. Carr, V. E. Hatfield, P. L. Holland, D. L. McPherrin, R. E. Warren, “Advanced algorithm development for standoff NBC contamination,” CRDEC-CR-107 (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., June1991).

J. Leonelli, R. Warren, D. Walter, T. Podoll, D. J. Eckstrom, P. L. Holland, J. M. Moser, S. Boyd, J. E. Jones, J. E. van der Laan, J. W. Rice, “XD of remote detection of NBC contamination using IR,” ERDEC-CR-108 (Edgewood Research Development, and Engineering Center, Aberdeen Proving Ground, Md., March1994).

A. Bell, C. Dyer, A. C. Jones, “Standoff liquid CW detection, chemical and biological standoff detection,” in Chemical and Biological Standoff Detection, J. O. Jensen, J.-M. Theriault, eds., Proc. SPIE5268, 302–309 (2004).
[CrossRef]

J.-M. Theriault, J. O. Jensen, A. Samuels, A. Ben-David, C. Gittins, W. Marinelli, “Detection of nonvolatile liquids on surfaces using passive infrared spectroradiometers,” in Proceedings of the Fifth Workshop on Standoff Detection for Chemical and Biological Defense, Williamsburg, Va., 24–28 September 2001 (n.p., 2001), Vol. 5, pp. 1–10.

J.-M. Thériault, J. O. Jensen, A. Samuels, A. Ben-David, C. Gittins, W. Marinelli, “Passive standoff detection of surface contaminants: modeling the spectral radiance,” in Instrumentation for Air Pollution and Global Atmospheric Monitoring, J. O. Jensen, R. L. Spellicy, eds., Proc. SPIE4574, 1–10 (2001).

J.-M. Thériault, J. Hancock, J. O. Jensen, E. Puckrin, F. D’Amico, “Passive standoff detection of liquid surface contaminants: recent results with CATSI,” in Chemical and Biological Standoff Detection, J. O. Jensen, J.-M. Theriault, eds., Proc. SPIE5268, 1–10 (2003).

F. A. Jenkins, W. E. White, Fundamentals of Optics, 3rd ed. (McGraw-Hill, New York, 1957), p. 263.

D. F. Flanigan, “The spectral signatures of chemical agent vapors and aerosols,” CRDC-TR-85002 (U.S. Army Chemical Research, Development, and Engineering Center, U.S. Army Armament, Munitions and Chemical Command, Aberdeen Proving Ground, Md., 21005-5066, April1985) (and personal communication, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Schematic diagram and the parameters used to evaluate the radiance of a clean surface and a surface covered by a contaminant.

Fig. 2
Fig. 2

Differential radiance spectra computed with a generic model for 1 g/m2 of VX deposited on the surface: (a) high-reflectivity surface (0.95); (b) low-reflectivity surface (0.05).

Fig. 3
Fig. 3

Nonuniform distribution of the mustard agent on (a) an aluminum plate and (b) a Mylar sheet.

Fig. 4
Fig. 4

Diagram and parameters used to evaluate the reflectance of (a) a homogeneous layer of an agent deposited on a surface, (b) an inhomogeneous layer of an agent deposited on a surface, and (c) a diagram illustrating the three consecutive measurements associated with characterization of the agent, AG, deposited on the Mylar, MY, sheet (see text).

Fig. 5
Fig. 5

(a) CATSI sensor with the optical head mounted on a tripod; (b) associated optical diagram.

Fig. 6
Fig. 6

Ray tracing of thermal radiation for the experimental setup.

Fig. 7
Fig. 7

Five successive steps of measurements for obtaining the radiance properties of the contaminant agent on a Mylar sheet substrate and on an aluminum-plate substrate.

Fig. 8
Fig. 8

Different target and reference surface samples: (a) aluminum plates, (b) sod, (c) green painted metal panels, (d) white painted metal panels, (e) concrete sample.

Fig. 9
Fig. 9

Hazard zone as observed from the CATSI sensor site showing the APC and the associated regions of contaminant coverage.

Fig. 10
Fig. 10

(a) Differential radiance measured with the CATSI sensor for two VX coverages deposited on an aluminum plate; (b) absorption coefficient of VX (for comparison).

Fig. 11
Fig. 11

Spectral-reflectance ratio derived from CATSI data for VX deposited on an aluminum plate compared with the best-fit calculations obtained with the IL model. Average VX surface coverages are 1 and 3 g/m2.

Fig. 12
Fig. 12

(a) Differential radiance spectra measured with the CATSI sensor for four HD coverages deposited on an aluminum plate; (b) absorption coefficient of HD (for comparison).

Fig. 13
Fig. 13

Spectral reflectance ratio derived from CATSI data for HD deposited on an aluminum plate compared with best-fit calculations obtained with the IL model for average surface coverages of (a) 1 g/m2, (b) 3 g/m2, (c) 3 g/m2 (munitions grade), and (d) 10 g/m2.

Fig. 14
Fig. 14

Double-pass transmission spectrum of a Mylar sheet 76.2 μm thick.

Fig. 15
Fig. 15

(a) Examples of measured differential radiance (the reference is aluminum plate) for the clean Mylar and for Mylar covered with 1 and 3 g/m2 of VX. (b) Measured reflectance-ratio spectra (the reference is aluminum plate) for the clean Mylar and for Mylar covered with 1 and 3 g/m2 of VX. (c) Reflectance-ratio spectra (R cont/R My) for Mylar covered with 1 and 3 g/m2 of VX. The bottom curve is the absorption coefficient of VX (for comparison).

Fig. 16
Fig. 16

(a) Differential radiance measured in the field at a standoff distance of ∼60 m with the CATSI sensor for three VX coverages deposited on an aluminum plate. (b) Spectral reflectance ratio derived from the CATSI field data for VX deposited on an aluminum plate. The VX surface coverages are 0.25, 0.5, and 1 g/m2.

Fig. 17
Fig. 17

Differential radiance measured in the field at a standoff distance of ∼60 m with the CATSI sensor for HD deposited on an aluminum plate. The HD surface coverage was 10 g/m2.

Fig. 18
Fig. 18

Spectral reflectance ratio derived from the CATSI field data for 10 g/m2 of HD deposited on an aluminum plate: lower curve, absorption coefficient of HD (for comparison).

Fig. 19
Fig. 19

Differential radiance spectra measured with CATSI for VX surface coverages of 3 and 10 g/m2 deposited on the side surface of the APC.

Fig. 20
Fig. 20

Spectral reflectance ratio derived from CATSI data for VX deposited on the APC side surface. The VX surface coverages are 3 and 10 g/m2. The absorption coefficient of VX is shown for comparison.

Fig. 21
Fig. 21

Differential radiance measured with CATSI for a VX coverage of 3 g/m2 deposited on a white painted panel and for VX coverage of 6 g/m2 deposited on a green painted panel. The absorption coefficient of VX is shown for comparison.

Tables (2)

Tables Icon

Table 1 Results for VX on Aluminum from the Fit of the IL Model to the Reflectance-Ratio Spectra Measured by CATSI

Tables Icon

Table 2 Results for HD on Aluminum from the Fit of the IL Model to the Reflectance-Ratio Spectra Measured by CATSI

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

B=C1ν3expC2νT-1,
Lclean=B-R0B-Ldown.
Lcont=B-RcontB-Ldown.
Lcont-LcleanΔL=R0-RcontB-Ldown.
ΔL=1-RcontR0B-Lclean.
RcontR0=1-ΔLB-Lclean.
Rcont=RS+Riτ21-RiRSτ2,
RcontR0τ2,
RcontR0τ2=exp-2kρL,
RcontR0=τ0 exp-2kρL,
RcontR0=f0+f1τ2
RcontR0=f0+f1 exp-2kρL,
RMyR0=1-ΔLMyB-Lclean,
RcontR0=1-ΔLcontB-Lclean,
ΔLMy=LMy-Lclean,
ΔLcont=Lcont-Lclean.
RMyRS+τS2R0,
RcontRScont+τS2τcont2R0,

Metrics