Abstract

The construction of a single-photon source by use of gated parametric fluorescence is reported with the measurement results of the photon number distribution. A beamlike twin-photon method is used in order to achieve high-collection efficiency. The estimated probability P(1) to find a single photon in a collimated output pulse is 26.5% at a repetition rate of 10 kHz when the effective quantum efficiency of 27.4% in the detection setup is compensated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE Press, Los Alamitos, California, 1984), pp. 175–179.
  2. E. Waks, A. Zeevi, Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A 65, 052310 1–16 (2002).
    [CrossRef]
  3. F. De Martini, G. Di Giuseppe, M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900–903 (1996).
    [CrossRef] [PubMed]
  4. F. Treussart, R. Alleaume, V. Le Floc’h, L. T. Xiao, J.-M. Courty, J.-F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89, 093601 (2002).
    [CrossRef] [PubMed]
  5. C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
    [CrossRef] [PubMed]
  6. C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
    [CrossRef] [PubMed]
  7. J. Kim, O. Benson, H. Kan, Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500–503 (1999).
    [CrossRef]
  8. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, “Electrically driven single photon source,” Science 295, 102–105 (2002).
    [CrossRef]
  9. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 1–4 (2002).
    [CrossRef]
  10. C. K. Hong, L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
    [CrossRef] [PubMed]
  11. H. P. Yuen, “Generation, detection, and application of high-intensity photon-number-eigenstate fields,” Phys. Rev. Lett. 56, 2176–2179 (1986).
    [CrossRef] [PubMed]
  12. P. R. Tasper, J. G. Rarity, J. S. Satchell, “Use of parametric down-conversion to generate sub-Poissonian light,” Phys. Rev. A 37, 2963–2967 (1986).
  13. J. G. Rarity, P. R. Tasper, E. Jakeman, “Observation of sub-Poissonian light in parametric down conversion,” Opt. Commun. 62, 201–206 (1987).
    [CrossRef]
  14. J. Mertz, A. Heidmann, C. Fabre, E. Giacobino, S. Reynaud, “Observation of high-intensity sub-Poissonian light using an optical parametric oscillator,” Phys. Rev. Lett. 64, 2897–2900 (1990).
    [CrossRef] [PubMed]
  15. For example, a single-photon source with the photon number distribution {P(0), P(1), P(2)} = {0.7, 0.3, 0} is much more useful for quantum cryptography than that with {0.5, 0.4, 0.05}, where P(n) is the probability to find n photons in a pulse. Those photon number distributions, however, yield the same Fano factor F = 0.7.
  16. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), pp. 1074–1093.
  17. S. Takeuchi, “Beamlike twin-photon generation by use of type 2 parametric down conversion,” Opt. Lett. 26, 843–845 (2001).
    [CrossRef]
  18. C. H. Monken, P. H. S. Ribeiro, S. Padua, “Optimizing the photon pair collection efficiency: a step toward a loophole-free Bell’s inequalities experiment,” Phys. Rev. A 57, R2267–R2269 (1998).
    [CrossRef]
  19. This assumption was verified by measuring the coincidence by use of Hanbury-Brown and Twiss-type setups.
  20. A. L. Migdall, R. U. Datla, A. V. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1995/96).
    [CrossRef]
  21. K. Sanaka, K. Kawahara, T. Kuga, “New high-efficiency source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
    [CrossRef] [PubMed]
  22. T. Yoshikawa, N. Namekata, S. Inoue, “Quantum key distribution using a telecommunication (multi-mode) fiber network,” in Proceedings of the 7th Conference on Quantum Information Technology (Quantum Information Technology of the Institute of Electronics, Information and Communication Engineers, Tokyo, Japan, 2002), pp. 161–164.
  23. S. Takeuchi, “Twin photon beams for the single photon generation,” in Proceedings of the 7th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology, ISQM-Tokyo ’01 (World Scientific, Teaneck, N.J., 2002), pp. 98–103.
    [CrossRef]
  24. T. B. Pittman, B. C. Jacobs, J. D. Franson, “Single photons on pseudo demand from stored parametric down-conversion,” Phys. Rev. A 66, 0423031–7 (2002).
    [CrossRef]

2002 (5)

E. Waks, A. Zeevi, Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A 65, 052310 1–16 (2002).
[CrossRef]

F. Treussart, R. Alleaume, V. Le Floc’h, L. T. Xiao, J.-M. Courty, J.-F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89, 093601 (2002).
[CrossRef] [PubMed]

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, “Electrically driven single photon source,” Science 295, 102–105 (2002).
[CrossRef]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 1–4 (2002).
[CrossRef]

T. B. Pittman, B. C. Jacobs, J. D. Franson, “Single photons on pseudo demand from stored parametric down-conversion,” Phys. Rev. A 66, 0423031–7 (2002).
[CrossRef]

2001 (3)

K. Sanaka, K. Kawahara, T. Kuga, “New high-efficiency source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
[CrossRef] [PubMed]

S. Takeuchi, “Beamlike twin-photon generation by use of type 2 parametric down conversion,” Opt. Lett. 26, 843–845 (2001).
[CrossRef]

C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

2000 (1)

C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

1999 (1)

J. Kim, O. Benson, H. Kan, Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500–503 (1999).
[CrossRef]

1998 (1)

C. H. Monken, P. H. S. Ribeiro, S. Padua, “Optimizing the photon pair collection efficiency: a step toward a loophole-free Bell’s inequalities experiment,” Phys. Rev. A 57, R2267–R2269 (1998).
[CrossRef]

1996 (1)

F. De Martini, G. Di Giuseppe, M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900–903 (1996).
[CrossRef] [PubMed]

1990 (1)

J. Mertz, A. Heidmann, C. Fabre, E. Giacobino, S. Reynaud, “Observation of high-intensity sub-Poissonian light using an optical parametric oscillator,” Phys. Rev. Lett. 64, 2897–2900 (1990).
[CrossRef] [PubMed]

1987 (1)

J. G. Rarity, P. R. Tasper, E. Jakeman, “Observation of sub-Poissonian light in parametric down conversion,” Opt. Commun. 62, 201–206 (1987).
[CrossRef]

1986 (3)

C. K. Hong, L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[CrossRef] [PubMed]

H. P. Yuen, “Generation, detection, and application of high-intensity photon-number-eigenstate fields,” Phys. Rev. Lett. 56, 2176–2179 (1986).
[CrossRef] [PubMed]

P. R. Tasper, J. G. Rarity, J. S. Satchell, “Use of parametric down-conversion to generate sub-Poissonian light,” Phys. Rev. A 37, 2963–2967 (1986).

Alleaume, R.

F. Treussart, R. Alleaume, V. Le Floc’h, L. T. Xiao, J.-M. Courty, J.-F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89, 093601 (2002).
[CrossRef] [PubMed]

Beattie, N. S.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, “Electrically driven single photon source,” Science 295, 102–105 (2002).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE Press, Los Alamitos, California, 1984), pp. 175–179.

Benson, O.

J. Kim, O. Benson, H. Kan, Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500–503 (1999).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE Press, Los Alamitos, California, 1984), pp. 175–179.

Cooper, K.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, “Electrically driven single photon source,” Science 295, 102–105 (2002).
[CrossRef]

Courty, J.-M.

F. Treussart, R. Alleaume, V. Le Floc’h, L. T. Xiao, J.-M. Courty, J.-F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89, 093601 (2002).
[CrossRef] [PubMed]

Dale, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

Datla, R. U.

A. L. Migdall, R. U. Datla, A. V. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1995/96).
[CrossRef]

De Martini, F.

F. De Martini, G. Di Giuseppe, M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900–903 (1996).
[CrossRef] [PubMed]

Di Giuseppe, G.

F. De Martini, G. Di Giuseppe, M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900–903 (1996).
[CrossRef] [PubMed]

Fabre, C.

J. Mertz, A. Heidmann, C. Fabre, E. Giacobino, S. Reynaud, “Observation of high-intensity sub-Poissonian light using an optical parametric oscillator,” Phys. Rev. Lett. 64, 2897–2900 (1990).
[CrossRef] [PubMed]

Franson, J. D.

T. B. Pittman, B. C. Jacobs, J. D. Franson, “Single photons on pseudo demand from stored parametric down-conversion,” Phys. Rev. A 66, 0423031–7 (2002).
[CrossRef]

Giacobino, E.

J. Mertz, A. Heidmann, C. Fabre, E. Giacobino, S. Reynaud, “Observation of high-intensity sub-Poissonian light using an optical parametric oscillator,” Phys. Rev. Lett. 64, 2897–2900 (1990).
[CrossRef] [PubMed]

Heidmann, A.

J. Mertz, A. Heidmann, C. Fabre, E. Giacobino, S. Reynaud, “Observation of high-intensity sub-Poissonian light using an optical parametric oscillator,” Phys. Rev. Lett. 64, 2897–2900 (1990).
[CrossRef] [PubMed]

Hong, C. K.

C. K. Hong, L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[CrossRef] [PubMed]

Inoue, S.

T. Yoshikawa, N. Namekata, S. Inoue, “Quantum key distribution using a telecommunication (multi-mode) fiber network,” in Proceedings of the 7th Conference on Quantum Information Technology (Quantum Information Technology of the Institute of Electronics, Information and Communication Engineers, Tokyo, Japan, 2002), pp. 161–164.

Jacobs, B. C.

T. B. Pittman, B. C. Jacobs, J. D. Franson, “Single photons on pseudo demand from stored parametric down-conversion,” Phys. Rev. A 66, 0423031–7 (2002).
[CrossRef]

Jakeman, E.

J. G. Rarity, P. R. Tasper, E. Jakeman, “Observation of sub-Poissonian light in parametric down conversion,” Opt. Commun. 62, 201–206 (1987).
[CrossRef]

Kan, H.

J. Kim, O. Benson, H. Kan, Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500–503 (1999).
[CrossRef]

Kardynal, B. E.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, “Electrically driven single photon source,” Science 295, 102–105 (2002).
[CrossRef]

Kawahara, K.

K. Sanaka, K. Kawahara, T. Kuga, “New high-efficiency source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
[CrossRef] [PubMed]

Kim, J.

J. Kim, O. Benson, H. Kan, Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500–503 (1999).
[CrossRef]

Kuga, T.

K. Sanaka, K. Kawahara, T. Kuga, “New high-efficiency source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
[CrossRef] [PubMed]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

Le Floc’h, V.

F. Treussart, R. Alleaume, V. Le Floc’h, L. T. Xiao, J.-M. Courty, J.-F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89, 093601 (2002).
[CrossRef] [PubMed]

Lobo, C. J.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, “Electrically driven single photon source,” Science 295, 102–105 (2002).
[CrossRef]

Mandel, L.

C. K. Hong, L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[CrossRef] [PubMed]

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), pp. 1074–1093.

Marrocco, M.

F. De Martini, G. Di Giuseppe, M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900–903 (1996).
[CrossRef] [PubMed]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

Mertz, J.

J. Mertz, A. Heidmann, C. Fabre, E. Giacobino, S. Reynaud, “Observation of high-intensity sub-Poissonian light using an optical parametric oscillator,” Phys. Rev. Lett. 64, 2897–2900 (1990).
[CrossRef] [PubMed]

Migdall, A. L.

A. L. Migdall, R. U. Datla, A. V. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1995/96).
[CrossRef]

Monken, C. H.

C. H. Monken, P. H. S. Ribeiro, S. Padua, “Optimizing the photon pair collection efficiency: a step toward a loophole-free Bell’s inequalities experiment,” Phys. Rev. A 57, R2267–R2269 (1998).
[CrossRef]

Namekata, N.

T. Yoshikawa, N. Namekata, S. Inoue, “Quantum key distribution using a telecommunication (multi-mode) fiber network,” in Proceedings of the 7th Conference on Quantum Information Technology (Quantum Information Technology of the Institute of Electronics, Information and Communication Engineers, Tokyo, Japan, 2002), pp. 161–164.

Orszak, J. S.

A. L. Migdall, R. U. Datla, A. V. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1995/96).
[CrossRef]

Padua, S.

C. H. Monken, P. H. S. Ribeiro, S. Padua, “Optimizing the photon pair collection efficiency: a step toward a loophole-free Bell’s inequalities experiment,” Phys. Rev. A 57, R2267–R2269 (1998).
[CrossRef]

Pelton, M.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 1–4 (2002).
[CrossRef]

C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

Pepper, M.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, “Electrically driven single photon source,” Science 295, 102–105 (2002).
[CrossRef]

Pittman, T. B.

T. B. Pittman, B. C. Jacobs, J. D. Franson, “Single photons on pseudo demand from stored parametric down-conversion,” Phys. Rev. A 66, 0423031–7 (2002).
[CrossRef]

Plant, J.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 1–4 (2002).
[CrossRef]

Rarity, J. G.

J. G. Rarity, P. R. Tasper, E. Jakeman, “Observation of sub-Poissonian light in parametric down conversion,” Opt. Commun. 62, 201–206 (1987).
[CrossRef]

P. R. Tasper, J. G. Rarity, J. S. Satchell, “Use of parametric down-conversion to generate sub-Poissonian light,” Phys. Rev. A 37, 2963–2967 (1986).

Reynaud, S.

J. Mertz, A. Heidmann, C. Fabre, E. Giacobino, S. Reynaud, “Observation of high-intensity sub-Poissonian light using an optical parametric oscillator,” Phys. Rev. Lett. 64, 2897–2900 (1990).
[CrossRef] [PubMed]

Ribeiro, P. H. S.

C. H. Monken, P. H. S. Ribeiro, S. Padua, “Optimizing the photon pair collection efficiency: a step toward a loophole-free Bell’s inequalities experiment,” Phys. Rev. A 57, R2267–R2269 (1998).
[CrossRef]

Ritchie, D. A.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, “Electrically driven single photon source,” Science 295, 102–105 (2002).
[CrossRef]

Roch, J.-F.

F. Treussart, R. Alleaume, V. Le Floc’h, L. T. Xiao, J.-M. Courty, J.-F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89, 093601 (2002).
[CrossRef] [PubMed]

Sanaka, K.

K. Sanaka, K. Kawahara, T. Kuga, “New high-efficiency source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
[CrossRef] [PubMed]

Santori, C.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 1–4 (2002).
[CrossRef]

C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

Satchell, J. S.

P. R. Tasper, J. G. Rarity, J. S. Satchell, “Use of parametric down-conversion to generate sub-Poissonian light,” Phys. Rev. A 37, 2963–2967 (1986).

Sergienko, A. V.

A. L. Migdall, R. U. Datla, A. V. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1995/96).
[CrossRef]

Shields, A. J.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, “Electrically driven single photon source,” Science 295, 102–105 (2002).
[CrossRef]

Shih, Y. H.

A. L. Migdall, R. U. Datla, A. V. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1995/96).
[CrossRef]

Solomon, G.

C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

Solomon, G. S.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 1–4 (2002).
[CrossRef]

Stevenson, R. M.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, “Electrically driven single photon source,” Science 295, 102–105 (2002).
[CrossRef]

Takeuchi, S.

S. Takeuchi, “Beamlike twin-photon generation by use of type 2 parametric down conversion,” Opt. Lett. 26, 843–845 (2001).
[CrossRef]

S. Takeuchi, “Twin photon beams for the single photon generation,” in Proceedings of the 7th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology, ISQM-Tokyo ’01 (World Scientific, Teaneck, N.J., 2002), pp. 98–103.
[CrossRef]

Tasper, P. R.

J. G. Rarity, P. R. Tasper, E. Jakeman, “Observation of sub-Poissonian light in parametric down conversion,” Opt. Commun. 62, 201–206 (1987).
[CrossRef]

P. R. Tasper, J. G. Rarity, J. S. Satchell, “Use of parametric down-conversion to generate sub-Poissonian light,” Phys. Rev. A 37, 2963–2967 (1986).

Treussart, F.

F. Treussart, R. Alleaume, V. Le Floc’h, L. T. Xiao, J.-M. Courty, J.-F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89, 093601 (2002).
[CrossRef] [PubMed]

Vuckovic, J.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 1–4 (2002).
[CrossRef]

Waks, E.

E. Waks, A. Zeevi, Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A 65, 052310 1–16 (2002).
[CrossRef]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

Wolf, E.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), pp. 1074–1093.

Xiao, L. T.

F. Treussart, R. Alleaume, V. Le Floc’h, L. T. Xiao, J.-M. Courty, J.-F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89, 093601 (2002).
[CrossRef] [PubMed]

Yamamoto, Y.

E. Waks, A. Zeevi, Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A 65, 052310 1–16 (2002).
[CrossRef]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 1–4 (2002).
[CrossRef]

C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

J. Kim, O. Benson, H. Kan, Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500–503 (1999).
[CrossRef]

Yoshikawa, T.

T. Yoshikawa, N. Namekata, S. Inoue, “Quantum key distribution using a telecommunication (multi-mode) fiber network,” in Proceedings of the 7th Conference on Quantum Information Technology (Quantum Information Technology of the Institute of Electronics, Information and Communication Engineers, Tokyo, Japan, 2002), pp. 161–164.

Yuan, Z.

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, “Electrically driven single photon source,” Science 295, 102–105 (2002).
[CrossRef]

Yuen, H. P.

H. P. Yuen, “Generation, detection, and application of high-intensity photon-number-eigenstate fields,” Phys. Rev. Lett. 56, 2176–2179 (1986).
[CrossRef] [PubMed]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

Zeevi, A.

E. Waks, A. Zeevi, Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A 65, 052310 1–16 (2002).
[CrossRef]

Zhang, B.

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 1–4 (2002).
[CrossRef]

Metrologia (1)

A. L. Migdall, R. U. Datla, A. V. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1995/96).
[CrossRef]

Nature (1)

J. Kim, O. Benson, H. Kan, Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500–503 (1999).
[CrossRef]

Opt. Commun. (1)

J. G. Rarity, P. R. Tasper, E. Jakeman, “Observation of sub-Poissonian light in parametric down conversion,” Opt. Commun. 62, 201–206 (1987).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (4)

C. H. Monken, P. H. S. Ribeiro, S. Padua, “Optimizing the photon pair collection efficiency: a step toward a loophole-free Bell’s inequalities experiment,” Phys. Rev. A 57, R2267–R2269 (1998).
[CrossRef]

P. R. Tasper, J. G. Rarity, J. S. Satchell, “Use of parametric down-conversion to generate sub-Poissonian light,” Phys. Rev. A 37, 2963–2967 (1986).

E. Waks, A. Zeevi, Y. Yamamoto, “Security of quantum key distribution with entangled photons against individual attacks,” Phys. Rev. A 65, 052310 1–16 (2002).
[CrossRef]

T. B. Pittman, B. C. Jacobs, J. D. Franson, “Single photons on pseudo demand from stored parametric down-conversion,” Phys. Rev. A 66, 0423031–7 (2002).
[CrossRef]

Phys. Rev. Lett. (9)

K. Sanaka, K. Kawahara, T. Kuga, “New high-efficiency source of photon pairs for engineering quantum entanglement,” Phys. Rev. Lett. 86, 5620–5623 (2001).
[CrossRef] [PubMed]

F. De Martini, G. Di Giuseppe, M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900–903 (1996).
[CrossRef] [PubMed]

F. Treussart, R. Alleaume, V. Le Floc’h, L. T. Xiao, J.-M. Courty, J.-F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89, 093601 (2002).
[CrossRef] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[CrossRef] [PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 1–4 (2002).
[CrossRef]

C. K. Hong, L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[CrossRef] [PubMed]

H. P. Yuen, “Generation, detection, and application of high-intensity photon-number-eigenstate fields,” Phys. Rev. Lett. 56, 2176–2179 (1986).
[CrossRef] [PubMed]

J. Mertz, A. Heidmann, C. Fabre, E. Giacobino, S. Reynaud, “Observation of high-intensity sub-Poissonian light using an optical parametric oscillator,” Phys. Rev. Lett. 64, 2897–2900 (1990).
[CrossRef] [PubMed]

Science (1)

Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, “Electrically driven single photon source,” Science 295, 102–105 (2002).
[CrossRef]

Other (6)

For example, a single-photon source with the photon number distribution {P(0), P(1), P(2)} = {0.7, 0.3, 0} is much more useful for quantum cryptography than that with {0.5, 0.4, 0.05}, where P(n) is the probability to find n photons in a pulse. Those photon number distributions, however, yield the same Fano factor F = 0.7.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), pp. 1074–1093.

C. H. Bennett, G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE Press, Los Alamitos, California, 1984), pp. 175–179.

This assumption was verified by measuring the coincidence by use of Hanbury-Brown and Twiss-type setups.

T. Yoshikawa, N. Namekata, S. Inoue, “Quantum key distribution using a telecommunication (multi-mode) fiber network,” in Proceedings of the 7th Conference on Quantum Information Technology (Quantum Information Technology of the Institute of Electronics, Information and Communication Engineers, Tokyo, Japan, 2002), pp. 161–164.

S. Takeuchi, “Twin photon beams for the single photon generation,” in Proceedings of the 7th International Symposium on Foundations of Quantum Mechanics in the Light of New Technology, ISQM-Tokyo ’01 (World Scientific, Teaneck, N.J., 2002), pp. 98–103.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of the experimental setup. A signal photon and a control photon are created at the same time in a β-barium borate crystal. The control photons were detected directly by a single-photon detector, while the signal photons were guided into an optical fiber delay line. Then the signal photons were gated by the fast optical shutter. This shutter opens only when the first detection event of the control photon is observed in each pulse (time window of 100 μs) and blocks other photons in the same pulse.

Fig. 2
Fig. 2

(a) Photon number distribution of the output state. P(1) and P(2) show the probability of finding one or two photons in an output pulse (100 μs), respectively. We counted the number of detection events in each pulse and estimated a photon number distribution at the output of our source, as described in the text. (b) Photon number distribution of weak coherent light with the same average photon number of (a). (c) Photon number distribution of weak coherent light with the same P(2) of (a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Pi= jij!j-i!i! ηi1-ηj-iPj,

Metrics