Abstract

We propose a new type of rod lens array with improved chromatic aberration. The new rod lens array consists of several kinds of rod lenses with different gradient constants and different color filter functions. The gradient constant of each lens was prepared such that the total conjugate length was identical to the specific wavelength of the lens with a constant lens length. We call our new type of rod lens array a combination-color lens array. The characteristics of this color-type lens array are as follows: high angular aperture, short focal length, and ease of production with established procedures. The optical resolution of the rod lens array is 300 dpi in a wide wavelength range that is high enough to be applied to color scanners.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Alda and G. D. Boreman, “On-axis and off-axis propagation of Gaussian beams in gradient index media,” Appl. Opt. 29, 2944–2950 (1990).
    [CrossRef] [PubMed]
  2. N. F. Borrelli, Microoptics Technology—Fabrication and Application of Lens Arrays and Devices (Marcel Dekker, New York, 1999).
  3. Y. Uodu and T. Ishimaru, “Optical characteristics of new plastic rod-lens array,” in Proceedings of Micro Optics Conference, K. Kuroda and S. Minami, eds. (Japan Society of Applied Physics, Hiroshima, Japan, 1995), pp. 20–23.
  4. Y. Uodu and N. Toyoda, “Plastic rod-lens with excellent optical performance,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communication, W. F. Frank, ed., Proc. SPIE 3135, 112–123 (1997).
    [CrossRef]
  5. Y. Uozu and K. Horie, “Mutual diffusion process for continuous fabrication of graded-index plastic rod-lenses,” Appl. Opt. 42, 6342–6348 (2003).
    [CrossRef] [PubMed]
  6. Y. Uodu, N. Hirota, and T. Ishimaru, “Improvement of chromatic aberration properties of the plastic rod-lens array,” in Proceedings of Micro Optics Conference, Y. Koike and Y. Ogura, eds. (Japan Society of Applied Physics, Makuhari, Japan, 1999), pp. 176–179.
  7. K. Nishizawa, “Chromatic aberration of the Selfoc lens as an imaging system,” Appl. Opt. 19, 1052–1055 (1980).
    [CrossRef] [PubMed]
  8. K. Fujii, S. Ogi, and N. Akazawa, “Gradient-index rod lens with a high acceptance angle for color use by Na+ for Li+ exchange,” Appl. Opt. 33, 8087–8093 (1994).
    [CrossRef] [PubMed]
  9. M. Kawazu and Y. Ogura, “Application of gradient-index fiber arrays to copy machines,” Appl. Opt. 19, 1105–1112 (1980).
    [CrossRef] [PubMed]
  10. W. Lama, “Optical properties of GRIN fiber lens arrays: dependence on fiber length,” Appl. Opt. 21, 2739–2746 (1982).
    [CrossRef] [PubMed]
  11. K. Uehira and K. Komiya, “Pattern edge color difference in a color image sensor with a GRIN rod lens,” Appl. Opt. 29, 4081–4086 (1990).
    [CrossRef] [PubMed]
  12. H. Ohta, H. Wakabayashi, T. Tajiri, and Y. Hatate, “Contact type color image sensor using switched light sources,” in Proceedings of Sensoren-Technologie und Anwendung (NTG Fachberichte, Bad Nauheim, Germany, 1986), pp. 21–26.
  13. Y. Koike, N. Tanio, E. Nihei, and Y. Ohtsuka, “Gradient-index polymer materials and their optical devices,” Polym. Eng. Sci. 29, 1200–1204 (1989).
    [CrossRef]
  14. K. Iga and Y. Kokubun, “Formulas calculating the refractive index profile of optical fibers from transverse interference patterns,” Appl. Opt. 17, 1972–1974 (1978).
    [CrossRef] [PubMed]
  15. S. Morino and K. Horie, “Photoinduced refractive index changes of polymer films containing photochromic dyes and evaluation of minimal switching energy,” ACS Symp. Ser. 672, 260–279 (1997).
    [CrossRef]
  16. Nippon Sheet Glass, Selfoc linear lens array data sheet (NSG America, Clark, N.J., September 1979).
  17. M. Kaneko, “Lens array for high resolution imaging system,” Microoptics News 15(2), 21–26 (1997; in Japanese).
  18. W. S. Colnurn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971).
    [CrossRef]

2003 (1)

1999 (2)

N. F. Borrelli, Microoptics Technology—Fabrication and Application of Lens Arrays and Devices (Marcel Dekker, New York, 1999).

Y. Uodu, N. Hirota, and T. Ishimaru, “Improvement of chromatic aberration properties of the plastic rod-lens array,” in Proceedings of Micro Optics Conference, Y. Koike and Y. Ogura, eds. (Japan Society of Applied Physics, Makuhari, Japan, 1999), pp. 176–179.

1997 (3)

Y. Uodu and N. Toyoda, “Plastic rod-lens with excellent optical performance,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communication, W. F. Frank, ed., Proc. SPIE 3135, 112–123 (1997).
[CrossRef]

S. Morino and K. Horie, “Photoinduced refractive index changes of polymer films containing photochromic dyes and evaluation of minimal switching energy,” ACS Symp. Ser. 672, 260–279 (1997).
[CrossRef]

M. Kaneko, “Lens array for high resolution imaging system,” Microoptics News 15(2), 21–26 (1997; in Japanese).

1995 (1)

Y. Uodu and T. Ishimaru, “Optical characteristics of new plastic rod-lens array,” in Proceedings of Micro Optics Conference, K. Kuroda and S. Minami, eds. (Japan Society of Applied Physics, Hiroshima, Japan, 1995), pp. 20–23.

1994 (1)

1990 (2)

1989 (1)

Y. Koike, N. Tanio, E. Nihei, and Y. Ohtsuka, “Gradient-index polymer materials and their optical devices,” Polym. Eng. Sci. 29, 1200–1204 (1989).
[CrossRef]

1986 (1)

H. Ohta, H. Wakabayashi, T. Tajiri, and Y. Hatate, “Contact type color image sensor using switched light sources,” in Proceedings of Sensoren-Technologie und Anwendung (NTG Fachberichte, Bad Nauheim, Germany, 1986), pp. 21–26.

1982 (1)

1980 (2)

1978 (1)

1971 (1)

Akazawa, N.

Alda, J.

Boreman, G. D.

Borrelli, N. F.

N. F. Borrelli, Microoptics Technology—Fabrication and Application of Lens Arrays and Devices (Marcel Dekker, New York, 1999).

Colnurn, W. S.

Fujii, K.

Haines, K. A.

Hatate, Y.

H. Ohta, H. Wakabayashi, T. Tajiri, and Y. Hatate, “Contact type color image sensor using switched light sources,” in Proceedings of Sensoren-Technologie und Anwendung (NTG Fachberichte, Bad Nauheim, Germany, 1986), pp. 21–26.

Hirota, N.

Y. Uodu, N. Hirota, and T. Ishimaru, “Improvement of chromatic aberration properties of the plastic rod-lens array,” in Proceedings of Micro Optics Conference, Y. Koike and Y. Ogura, eds. (Japan Society of Applied Physics, Makuhari, Japan, 1999), pp. 176–179.

Horie, K.

Y. Uozu and K. Horie, “Mutual diffusion process for continuous fabrication of graded-index plastic rod-lenses,” Appl. Opt. 42, 6342–6348 (2003).
[CrossRef] [PubMed]

S. Morino and K. Horie, “Photoinduced refractive index changes of polymer films containing photochromic dyes and evaluation of minimal switching energy,” ACS Symp. Ser. 672, 260–279 (1997).
[CrossRef]

Iga, K.

Ishimaru, T.

Y. Uodu, N. Hirota, and T. Ishimaru, “Improvement of chromatic aberration properties of the plastic rod-lens array,” in Proceedings of Micro Optics Conference, Y. Koike and Y. Ogura, eds. (Japan Society of Applied Physics, Makuhari, Japan, 1999), pp. 176–179.

Y. Uodu and T. Ishimaru, “Optical characteristics of new plastic rod-lens array,” in Proceedings of Micro Optics Conference, K. Kuroda and S. Minami, eds. (Japan Society of Applied Physics, Hiroshima, Japan, 1995), pp. 20–23.

Kaneko, M.

M. Kaneko, “Lens array for high resolution imaging system,” Microoptics News 15(2), 21–26 (1997; in Japanese).

Kawazu, M.

Koike, Y.

Y. Koike, N. Tanio, E. Nihei, and Y. Ohtsuka, “Gradient-index polymer materials and their optical devices,” Polym. Eng. Sci. 29, 1200–1204 (1989).
[CrossRef]

Kokubun, Y.

Komiya, K.

Lama, W.

Morino, S.

S. Morino and K. Horie, “Photoinduced refractive index changes of polymer films containing photochromic dyes and evaluation of minimal switching energy,” ACS Symp. Ser. 672, 260–279 (1997).
[CrossRef]

Nihei, E.

Y. Koike, N. Tanio, E. Nihei, and Y. Ohtsuka, “Gradient-index polymer materials and their optical devices,” Polym. Eng. Sci. 29, 1200–1204 (1989).
[CrossRef]

Nishizawa, K.

Ogi, S.

Ogura, Y.

Ohta, H.

H. Ohta, H. Wakabayashi, T. Tajiri, and Y. Hatate, “Contact type color image sensor using switched light sources,” in Proceedings of Sensoren-Technologie und Anwendung (NTG Fachberichte, Bad Nauheim, Germany, 1986), pp. 21–26.

Ohtsuka, Y.

Y. Koike, N. Tanio, E. Nihei, and Y. Ohtsuka, “Gradient-index polymer materials and their optical devices,” Polym. Eng. Sci. 29, 1200–1204 (1989).
[CrossRef]

Tajiri, T.

H. Ohta, H. Wakabayashi, T. Tajiri, and Y. Hatate, “Contact type color image sensor using switched light sources,” in Proceedings of Sensoren-Technologie und Anwendung (NTG Fachberichte, Bad Nauheim, Germany, 1986), pp. 21–26.

Tanio, N.

Y. Koike, N. Tanio, E. Nihei, and Y. Ohtsuka, “Gradient-index polymer materials and their optical devices,” Polym. Eng. Sci. 29, 1200–1204 (1989).
[CrossRef]

Toyoda, N.

Y. Uodu and N. Toyoda, “Plastic rod-lens with excellent optical performance,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communication, W. F. Frank, ed., Proc. SPIE 3135, 112–123 (1997).
[CrossRef]

Uehira, K.

Uodu, Y.

Y. Uodu, N. Hirota, and T. Ishimaru, “Improvement of chromatic aberration properties of the plastic rod-lens array,” in Proceedings of Micro Optics Conference, Y. Koike and Y. Ogura, eds. (Japan Society of Applied Physics, Makuhari, Japan, 1999), pp. 176–179.

Y. Uodu and N. Toyoda, “Plastic rod-lens with excellent optical performance,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communication, W. F. Frank, ed., Proc. SPIE 3135, 112–123 (1997).
[CrossRef]

Y. Uodu and T. Ishimaru, “Optical characteristics of new plastic rod-lens array,” in Proceedings of Micro Optics Conference, K. Kuroda and S. Minami, eds. (Japan Society of Applied Physics, Hiroshima, Japan, 1995), pp. 20–23.

Uozu, Y.

Wakabayashi, H.

H. Ohta, H. Wakabayashi, T. Tajiri, and Y. Hatate, “Contact type color image sensor using switched light sources,” in Proceedings of Sensoren-Technologie und Anwendung (NTG Fachberichte, Bad Nauheim, Germany, 1986), pp. 21–26.

ACS Symp. Ser. (1)

S. Morino and K. Horie, “Photoinduced refractive index changes of polymer films containing photochromic dyes and evaluation of minimal switching energy,” ACS Symp. Ser. 672, 260–279 (1997).
[CrossRef]

Appl. Opt. (9)

Microoptics News (1)

M. Kaneko, “Lens array for high resolution imaging system,” Microoptics News 15(2), 21–26 (1997; in Japanese).

Polym. Eng. Sci. (1)

Y. Koike, N. Tanio, E. Nihei, and Y. Ohtsuka, “Gradient-index polymer materials and their optical devices,” Polym. Eng. Sci. 29, 1200–1204 (1989).
[CrossRef]

Other (6)

H. Ohta, H. Wakabayashi, T. Tajiri, and Y. Hatate, “Contact type color image sensor using switched light sources,” in Proceedings of Sensoren-Technologie und Anwendung (NTG Fachberichte, Bad Nauheim, Germany, 1986), pp. 21–26.

Nippon Sheet Glass, Selfoc linear lens array data sheet (NSG America, Clark, N.J., September 1979).

N. F. Borrelli, Microoptics Technology—Fabrication and Application of Lens Arrays and Devices (Marcel Dekker, New York, 1999).

Y. Uodu and T. Ishimaru, “Optical characteristics of new plastic rod-lens array,” in Proceedings of Micro Optics Conference, K. Kuroda and S. Minami, eds. (Japan Society of Applied Physics, Hiroshima, Japan, 1995), pp. 20–23.

Y. Uodu and N. Toyoda, “Plastic rod-lens with excellent optical performance,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communication, W. F. Frank, ed., Proc. SPIE 3135, 112–123 (1997).
[CrossRef]

Y. Uodu, N. Hirota, and T. Ishimaru, “Improvement of chromatic aberration properties of the plastic rod-lens array,” in Proceedings of Micro Optics Conference, Y. Koike and Y. Ogura, eds. (Japan Society of Applied Physics, Makuhari, Japan, 1999), pp. 176–179.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Image transfer through a rod lens: (a) image of light meandering through the rod lens (P is the cycle length), (b) stiffened real imaging, (c) difference in total conjugate lengths for light of different wavelengths.

Fig. 2
Fig. 2

Equipment for measurement of the MTF.

Fig. 3
Fig. 3

The CCLA: (a) Three-row type CCLA. Lens 1 has a smaller gradient constant and transparency to blue light, lens 2 has a middle gradient constant and transparency to green light, and lens 3 has a larger gradient constant and transparency to red light. (b) Dual-row-type CCLA. Lens 4 has a smaller gradient constant and transparency to blue and green light and lens 5 has a larger gradient constant and transparency to red and green light.

Fig. 4
Fig. 4

Relationships between optical parameters and wavelengths of the plastic rod lens: (a) wavelength versus refractive index at the center axis, n 0, extrapolated from Eq. (1) from measured values. (b) Wavelength versus TCB. Measured values for the standard plastic rod lens array. The dashed line corresponds to a value of TCB set as 9.1 mm. Dashed lines correspond to the values of TCB for lenses 1, 2, and 3; (c) wavelength versus gradient constant g.

Fig. 5
Fig. 5

MTF values for various TC values; MTF values were measured at 650 nm. TCB, 9.55 mm. Filled symbols, measured values; solid curve, fitting curve; ΔTC = TC - TCB.

Fig. 6
Fig. 6

MTF values of the CCLA. Dotted curve, calculated values for a three-row-type CCLA; solid curve, calculated values for a dual-row-type CCLA; open circles, measured values for the CCLA produced in the present research.

Fig. 7
Fig. 7

Transmittance spectra of dye solutions in methyl methacrylate. (a) Spectra for MS Yellow HD-180: curve, spectrum of a 5.0 × 10-3 wt. % solution; thin curve, that of a 1.0 × 10-3 wt. % solution, λmax = 432 nm. (b) Spectra for Diaresin Blue 4G: thick curve, spectrum of a 1.0 × 10-2 wt. % solution; thin curve, that of a 5.0 × 10-3 solution; λmax = 669 nm.

Fig. 8
Fig. 8

Effects of offset from the optimum position of MTF values for a CCLA at 570 nm: (a) offset of the test chart with a fixed position of the image sensor, (b) offset from the center position of the rod lens array with fixed positions of the test chart and the image sensor.

Tables (3)

Tables Icon

Table 1 Calculated Gradient Constants and Diameters of Individual Rod Lenses

Tables Icon

Table 2 Composition of Blending Polymers and Comonomers for Individual Layers of Lens A (wt. %)a

Tables Icon

Table 3 Optical Parameters for Individual Rod Lenses of the Dual-Row Type CCLA

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

MTFW=IWmax-IWminIWmax+IWmin×100%,
nr, λ=n0λ1-gλ2r21/2,
TCBλ=Z0-2/n0λgλtangλZ0/2,
gλr=gλr.
MTF%=A/A0×100,
MTFtotal%=i fiMi=i A0iMii A0i.

Metrics