Abstract

We demonstrate a simple optical configuration that amplifies the usable stroke of a deformable mirror. By arranging for the wavefront to traverse the deformable mirror more than once, we correct it more than once. The experimental implementation of the idea demonstrates a doubling of 2.0 and 2.04 by two different means.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Roggeman, B. M. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 438–505 (1997).
    [CrossRef]
  2. M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett. 25, 245–247 (2000).
    [CrossRef]
  3. N. Doble, G.-Y. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27, 1537–1539 (2002).
    [CrossRef]
  4. E. J. Fernandez, I. Iglesias, P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
    [CrossRef]
  5. L. J. Zhu, P. C. Sun, D. U. Bartsch, W. R. Freeman, Y. Fainman, “Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror,” Appl. Opt. 38, 6019–6026 (1999).
    [CrossRef]
  6. L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
    [CrossRef] [PubMed]
  7. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  8. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
    [CrossRef] [PubMed]
  9. L. A. Thompson, “Adaptive optics in astronomy,” Phys. Today 47(12), 24 (1994).
    [CrossRef]
  10. P. W. Milonni, “Resource letter: AOA-1: adaptive optics for astronomy,” Am. J. Phys. 67, 476–485 (1999).
    [CrossRef]
  11. M. P. Rimmer, “Method for evaluating lateral shearing interferograms,” Appl. Opt. 13, 623–629 (1974).
    [CrossRef] [PubMed]
  12. M. A. Van Dam, R. G. Lane, “Extended analysis of curvature sensing,” J. Opt. Soc. Am. A 19, 1390–1397 (2002).
    [CrossRef]
  13. R. H. Webb, C. M. Penney, J. Sobiech, P. R. Staver, S. A. Burns, “The SRR: a null-seeking aberrometer,” Appl. Opt. 42, 736–744 (2003).
    [CrossRef] [PubMed]
  14. B. C. Platt, R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refr. Surg. 17, S573–S577 (2001).
  15. S. R. Dale, G. D. Love, R. M. Myers, A. F. Naumov, “Wavefront correction using a self-referencing phase conjugation system based on a Zernike cell,” Opt. Commun. 191, 31–38 (2001).
    [CrossRef]
  16. T. Shirai, T. H. Barnes, T. G. Haskell, “Adaptive wave-front correction by means of all-optical feedback interferometry,” Opt. Lett. 25, 773–775 (2000).
    [CrossRef]
  17. J. Porter, A. Guirao, I. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
    [CrossRef]
  18. ZEMAX Development Corporation, 4901 Morena Blvd., Suite 207, San Diego, Calif. 92117–7320.
  19. Boston Micromachines Corporation, Watertown, Mass. 02472: Model μDM140 deformable mirror system.
  20. S. Bara, T. Mancebo, E. Moreno-Barriuso, “Positioning tolerances for phase plates compensating aberrations of the human eye,” Appl. Opt. 39, 3413–3420 (2000).
    [CrossRef]
  21. A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001).
    [CrossRef]

2003 (1)

2002 (3)

2001 (5)

2000 (3)

1999 (2)

1997 (3)

L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
[CrossRef] [PubMed]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

M. C. Roggeman, B. M. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 438–505 (1997).
[CrossRef]

1994 (1)

L. A. Thompson, “Adaptive optics in astronomy,” Phys. Today 47(12), 24 (1994).
[CrossRef]

1974 (1)

Artal, P.

Bara, S.

Barnes, T. H.

Bartsch, D. U.

Bierden, P.

Bradley, A.

L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
[CrossRef] [PubMed]

Burns, S. A.

Campbell, M. C. W.

Chen, L.

Cox, I.

Cox, I. G.

Dale, S. R.

S. R. Dale, G. D. Love, R. M. Myers, A. F. Naumov, “Wavefront correction using a self-referencing phase conjugation system based on a Zernike cell,” Opt. Commun. 191, 31–38 (2001).
[CrossRef]

Doble, N.

Donnelly, W. J.

Fainman, Y.

Fernandez, E. J.

Freeman, W. R.

Fugate, R. Q.

M. C. Roggeman, B. M. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 438–505 (1997).
[CrossRef]

Guirao, A.

Haskell, T. G.

Hebert, T. J.

Iglesias, I.

Juskaitis, R.

Laczik, Z. J.

Lane, R. G.

Liang, J.

Love, G. D.

S. R. Dale, G. D. Love, R. M. Myers, A. F. Naumov, “Wavefront correction using a self-referencing phase conjugation system based on a Zernike cell,” Opt. Commun. 191, 31–38 (2001).
[CrossRef]

Mancebo, T.

Miller, D. T.

Milonni, P. W.

P. W. Milonni, “Resource letter: AOA-1: adaptive optics for astronomy,” Am. J. Phys. 67, 476–485 (1999).
[CrossRef]

Moreno-Barriuso, E.

Myers, R. M.

S. R. Dale, G. D. Love, R. M. Myers, A. F. Naumov, “Wavefront correction using a self-referencing phase conjugation system based on a Zernike cell,” Opt. Commun. 191, 31–38 (2001).
[CrossRef]

Naumov, A. F.

S. R. Dale, G. D. Love, R. M. Myers, A. F. Naumov, “Wavefront correction using a self-referencing phase conjugation system based on a Zernike cell,” Opt. Commun. 191, 31–38 (2001).
[CrossRef]

Neil, M. A. A.

Olivier, S.

Penney, C. M.

Platt, B. C.

B. C. Platt, R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refr. Surg. 17, S573–S577 (2001).

Porter, J.

Queener, H.

Rimmer, M. P.

Roggeman, M. C.

M. C. Roggeman, B. M. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 438–505 (1997).
[CrossRef]

Romero-Borja, F.

Roorda, A.

Sarafis, V.

Shack, R.

B. C. Platt, R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refr. Surg. 17, S573–S577 (2001).

Shirai, T.

Singer, B.

Sobiech, J.

Staver, P. R.

Sun, P. C.

Thibos, L. N.

L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
[CrossRef] [PubMed]

Thompson, L. A.

L. A. Thompson, “Adaptive optics in astronomy,” Phys. Today 47(12), 24 (1994).
[CrossRef]

Van Dam, M. A.

Webb, R. H.

Welsh, B. M.

M. C. Roggeman, B. M. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 438–505 (1997).
[CrossRef]

Williams, D. R.

Wilson, T.

Yoon, G.-Y.

Zhu, L. J.

Am. J. Phys. (1)

P. W. Milonni, “Resource letter: AOA-1: adaptive optics for astronomy,” Am. J. Phys. 67, 476–485 (1999).
[CrossRef]

Appl. Opt. (4)

J. Opt. Soc. Am. A (4)

J. Refr. Surg. (1)

B. C. Platt, R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refr. Surg. 17, S573–S577 (2001).

Opt. Commun. (1)

S. R. Dale, G. D. Love, R. M. Myers, A. F. Naumov, “Wavefront correction using a self-referencing phase conjugation system based on a Zernike cell,” Opt. Commun. 191, 31–38 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Optom. Vis. Sci. (1)

L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
[CrossRef] [PubMed]

Phys. Today (1)

L. A. Thompson, “Adaptive optics in astronomy,” Phys. Today 47(12), 24 (1994).
[CrossRef]

Rev. Mod. Phys. (1)

M. C. Roggeman, B. M. Welsh, R. Q. Fugate, “Improving the resolution of ground-based telescopes,” Rev. Mod. Phys. 69, 438–505 (1997).
[CrossRef]

Other (2)

ZEMAX Development Corporation, 4901 Morena Blvd., Suite 207, San Diego, Calif. 92117–7320.

Boston Micromachines Corporation, Watertown, Mass. 02472: Model μDM140 deformable mirror system.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simple version of the amplifier. Light incident on the deformable mirror is returned with proper inversions so that an image of the DM lands exactly on the DM. The DM thus acts twice on the incident wavefront. A detailed discussion is presented in the text.

Fig. 2
Fig. 2

Simplified schematic for a variant of Fig. 1. The filled circles represent focal points for the beams, shown here as single (chief) rays.

Fig. 3
Fig. 3

The diffuse reflector at the focus acts as a point source. The resulting light retains no phase information from the incident beam and so makes a single pass over the DM, which is sensed by the Shack-Hartmann (S-H) sensor.

Fig. 4
Fig. 4

For another single-pass configuration, we just turn the DM normal to the incident beam, so that it sends the light directly back to the Shack-Hartmann (S-H) sensor.

Fig. 5
Fig. 5

Simplest arrangement of the amplifier. The concave mirrors are drawn to have the same focal lengths. The upper drawing shows how the collimated beam is recollimated by the doubler. The lower drawing demonstrates how the DM is reimaged on itself after proper inversions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

rmsdoubler/rmsdiffuser=1.3308/0.6521 =2.04,rmsdoubler/rmssingle pass=1.4431/0.7209=2.00.

Metrics