Abstract

The effect of dopant composition ratio on nonvolatile holographic recording in LiNbO3:Cu:Ce crystals is investigated experimentally. The results show that the dopant composition ratio affects the recording sensitivity and fixed diffraction efficiency by altering the UV light absorption characteristics of the crystals during nonvolatile, holographic recording. Increasing the dopant composition ratio of Cu and Ce leads to an increase in the absorption of UV light and further to an increase in the recording sensitivity and fixed diffraction efficiency. The UV light absorption characteristics of LiNbO3:Cu:Ce crystals and their roles in nonvolatile holographic recording are theoretically analyzed. The theoretical results are consistent with those of the experiments.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  2. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996).
    [CrossRef] [PubMed]
  3. M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tao, “Angle-multiplexed hologram storage in LiNbO3:Tb, Fe,” Opt. Lett. 25, 1337–1339 (2000).
    [CrossRef]
  4. K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic recording in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
    [CrossRef]
  5. Y. Liu, L. Liu, C. Zhou, “Prescription for optimizing holograms in LiNbO3:Fe:Mn,” Opt. Lett. 25, 551–553 (2000).
    [CrossRef]
  6. G. W. Burr, D. Psaltis, “Effect of the oxidation state of LiNbO3:Fe on the diffraction efficiency of multiple holograms,” Opt. Lett. 21, 893–895 (1996).
    [CrossRef] [PubMed]
  7. A. Adibi, K. Buse, D. Psaltis, “The role of carrier mobility in holographic recording in LiNbO3,” Appl. Phys. B 72, 653–659 (2001).
    [CrossRef]
  8. A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
    [CrossRef]
  9. O. Momtahan, A. Adibi, “Global optimization of sensitivity and dynamic range for two-center holographic recording,” J. Opt. Soc. Am. B 20, 449–461 (2003).
    [CrossRef]
  10. Y. Liu, L. Liu, “Theoretical investigation of nonvolatile holographic storage in doubly doped lithium niobate crystals,” J. Opt. Soc. Am. B 19, 2413–2422 (2002).
    [CrossRef]
  11. A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
    [CrossRef]
  12. Y. Liu, L. Liu, C. Zhou, L. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
    [CrossRef]
  13. D. Liu, L. Liu, C. Zhou, L. Ren, G. Li, “Nonvolatile holograms in LiNbO3:Fe:Cu using the bleaching effect,” Appl. Opt. 41, 6809–6811 (2002).
    [CrossRef] [PubMed]
  14. X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
    [CrossRef]
  15. Y. Liu, L. Liu, L. Xu, C. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Ce:Cu crystals,” Opt. Commun. 190, 339–343 (2001).
    [CrossRef]
  16. R. Orlowski, E. Krätzig, “Holographic method for determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
    [CrossRef]
  17. L. Ren, L. Liu, D. Liu, J. Zu, Z. Luan, “Optimal switching from recording to fixing for high diffraction efficiency from a LiNbO3:Ce:Cu photorefractive nonvolatile hologram,” Opt. Lett. 29, 186–188 (2004).
    [CrossRef] [PubMed]
  18. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: Steady state,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]

2004 (1)

2003 (1)

2002 (2)

2001 (3)

Y. Liu, L. Liu, L. Xu, C. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Ce:Cu crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “The role of carrier mobility in holographic recording in LiNbO3,” Appl. Phys. B 72, 653–659 (2001).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

2000 (4)

1999 (1)

A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

1998 (1)

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic recording in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

1996 (2)

1993 (1)

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

1978 (1)

R. Orlowski, E. Krätzig, “Holographic method for determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

Adibi, A.

O. Momtahan, A. Adibi, “Global optimization of sensitivity and dynamic range for two-center holographic recording,” J. Opt. Soc. Am. B 20, 449–461 (2003).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “The role of carrier mobility in holographic recording in LiNbO3,” Appl. Phys. B 72, 653–659 (2001).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic recording in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Burr, G. W.

Buse, K.

A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “The role of carrier mobility in holographic recording in LiNbO3,” Appl. Phys. B 72, 653–659 (2001).
[CrossRef]

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic recording in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Chang, T. Y.

Christian, W.

Furukawa, Y.

Hatano, H.

Hong, J. H.

Hudson, T.

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

Kitamura, K.

Krätzig, E.

R. Orlowski, E. Krätzig, “Holographic method for determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Lee, M.

Li, G.

Liu, D.

Liu, L.

Liu, Y.

Luan, Z.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

McMichael, I.

Mok, F. H.

Momtahan, O.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Orlowski, R.

R. Orlowski, E. Krätzig, “Holographic method for determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

Pletcher, D.

Psaltis, D.

A. Adibi, K. Buse, D. Psaltis, “The role of carrier mobility in holographic recording in LiNbO3,” Appl. Phys. B 72, 653–659 (2001).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Two-center holographic recording,” J. Opt. Soc. Am. B 18, 584–601 (2001).
[CrossRef]

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic recording in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

G. W. Burr, D. Psaltis, “Effect of the oxidation state of LiNbO3:Fe on the diffraction efficiency of multiple holograms,” Opt. Lett. 21, 893–895 (1996).
[CrossRef] [PubMed]

Ren, L.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Takekawa, S.

Tao, S.

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Xu, L.

Y. Liu, L. Liu, L. Xu, C. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Ce:Cu crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

Y. Liu, L. Liu, C. Zhou, L. Xu, “Nonvolatile photorefractive holograms in LiNbO3:Cu:Ce crystals,” Opt. Lett. 25, 908–910 (2000).
[CrossRef]

Yue, X.

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

Zhou, C.

Zu, J.

Appl. Opt. (2)

Appl. Phys. B (1)

A. Adibi, K. Buse, D. Psaltis, “The role of carrier mobility in holographic recording in LiNbO3,” Appl. Phys. B 72, 653–659 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

A. Adibi, K. Buse, D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. I: Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

J. Appl. Phys. (1)

X. Yue, A. Adibi, T. Hudson, K. Buse, D. Psaltis, “Role of cerium in lithium niobate for holographic recording,” J. Appl. Phys. 87, 4051–4055 (2000).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (1)

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic recording in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Opt. Commun. (1)

Y. Liu, L. Liu, L. Xu, C. Zhou, “Intensity dependence of two-center nonvolatile holographic recording in LiNbO3:Ce:Cu crystals,” Opt. Commun. 190, 339–343 (2001).
[CrossRef]

Opt. Lett. (6)

Solid State Commun. (1)

R. Orlowski, E. Krätzig, “Holographic method for determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Transmission spectra of the specimens LN2, LN4, and LN6 before UV exposure.

Fig. 2
Fig. 2

Transmission spectra of the three groups of specimens (a) LN1 and LN2, (b) LN3 and LN4, and (c) LN5 and LN6 under different annealing conditions and after UV exposure.

Fig. 3
Fig. 3

Schematic diagram of the experimental setup for two-center holographic recording. PRC, photorefractive cyrstal.

Fig. 4
Fig. 4

Recording and readout curves for the three groups of specimens (a) LN1 and LN2, (b) LN3 and LN4, and (c) LN5 and LN6.

Fig. 5
Fig. 5

Variation of UV absorption coefficient αUV with (a) dopant composition ratio N Cu/N Ce with the total doping levels of CuO and Ce2O3 fixed at 0.096 wt. % to LiNbO3 and (b) OR degree (deg) x in a LiNbO3:Cu:Ce crystal doped with 0.011 wt. % CuO and 0.085 wt. % Ce2O3.

Fig. 6
Fig. 6

Variation of (a) fixed diffraction efficient η f and (b) recording sensitivity S with UV absorption coefficient αUV in a LiNbO3:Cu:Ce crystal.

Tables (2)

Tables Icon

Table 1 Notation, Dopant Composition Ratio, and Annealing Condition of the Specimens Investigated

Tables Icon

Table 2 Recording Sensitivity S and Fixed Diffraction Efficiency ηf for the Specimens Investigateda

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

αUV=sCu,UVNCu-+sCe,UVNCe-hvUV,

Metrics