Abstract

Dualex (dual excitation) is a field-portable instrument, hereby described, for the assessment of polyphenolic compounds in leaves from the measurement of UV absorbance of the leaf epidermis by double excitation of chlorophyll fluorescence. The instrument takes advantage of a feedback loop that equalizes the fluorescence level induced by a reference red light to the UV-light-induced fluorescence level. This allows quick measurement from attached leaves even under field conditions. The use of light-emitting diodes and of a leaf-clip configuration makes Dualex a user-friendly instrument with potential applications in ecophysiological research, light climate analysis, agriculture, forestry, horticulture, pest management, selection of medicinal plants, and wherever accumulation of leaf polyphenolics is involved in plant responses to the environment.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. Waterman, S. Mole, Analysis of Phenolic Plant Metabolites, Methods in Ecology (Blackwell Scientific, Oxford, UK, 1994), p. 238.
  2. M. M. Caldwell, “Solar UV irradiation and the growth and development of higher plants,” in Photophysiology, A. C. Giese, ed. (Academic, New York, 1971), pp. 131–171.
  3. M. M. Caldwell, R. Robberecht, S. D. Flint, “Internal filters: prospects for UV-acclimation in higher plants,” Physiol. Plant. 58, 445–450 (1983).
    [CrossRef]
  4. P. D. Coley, J. P. Bryant, S. Chapin, “Resource availability and plant antiherbivore defense,” Science 230, 895–899 (1985).
    [CrossRef] [PubMed]
  5. K. Hahlbrock, D. Scheel, “Physiology and molecular biology of phenylpropanoid metabolism,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 347–369 (1989).
    [CrossRef]
  6. Z. G. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, I. Moya, “The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves,” Plant Cell Environ. 25, 1663–1676 (2002).
    [CrossRef]
  7. M. N. Merzlyak, A. E. Solovchenko, A. A. Gitelson, “Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit,” Postharvest Biol. Technol. 27, 197–211 (2003).
    [CrossRef]
  8. T. A. Day, B. W. Howells, W. J. Rice, “Ultraviolet absorption and epidermal-transmittance spectra in foliage,” Physiol. Plant. 92, 207–218 (1994).
    [CrossRef]
  9. J. F. Bornman, T. C. Vogelmann, “Penetration of blue and UV radiation measured by fiber optics in spruce and fir needles,” Physiol. Plant. 72, 699–705 (1988).
    [CrossRef]
  10. W. Bilger, M. Veit, L. Schreiber, U. Schreiber, “Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence,” Physiol Plant 101, 754–763 (1997).
    [CrossRef]
  11. W. Bilger, T. Johnsen, U. Schreiber, “UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants,” J. Exp. Bot. 52, 2007–2017 (2001).
    [CrossRef] [PubMed]
  12. P. Burchard, W. Bilger, G. Weissenbock, “Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements,” Plant Cell Environ. 23, 1373–1380 (2000).
    [CrossRef]
  13. G. Krause, E. Weis, “Chlorophyll fluorescence and photosynthesis: the basics,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349 (1991).
    [CrossRef]
  14. P. W. Barnes, P. S. Searles, C. L. Ballare, R. J. Ryel, M. M. Caldwell, “Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies,” Physiol. Plant. 109, 274–283 (2000).
    [CrossRef]
  15. H. W. Trissl, “Determination of the quenching efficiency of the oxidized primary donor of Photosystem I, P700+: implications for the trapping mechanism,” Photosynth. Res. 54, 237–240 (1997).
    [CrossRef]
  16. Z. G. Cerovic, Y. Goulas, I. Moya, “Device for measuring light absorption characteristics of a biological tissue sample,” Patent WO03029791 (10April2003).
  17. G. Samson, O. Prasil, B. Yaakoubd, “Photochemical and thermal phases of chlorophyll a fluorescence,” Photosynthetica 37, 163–182 (1999).
    [CrossRef]
  18. Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agron. Agric. Environ. 19, 543–578 (1999).
    [CrossRef]
  19. A. Cartelat, Z. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.-L. Prioul, A. Barbottin, M.-H. Jeuffroy, P. Gate, G. Agati, I. Moya, “Optically assessed content of leaf polyphenolics and chlorophyll of leaves as indicators of nitrogen deficiency in wheat (Triticum aestivum L.),” Field Crops Res. (to be published).
  20. A. Ounis, Z. G. Cerovic, J. M. Briantais, I. Moya, “Dual-excitation FLIDAR for the estimation of epidermal UV absorption in leaves and canopies,” Remote Sens. Environ. 76, 33–48 (2001).
    [CrossRef]
  21. D. S. Ellsworth, P. B. Reich, “Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments,” Funct. Ecol. 6, 423–435 (1992).
    [CrossRef]
  22. J. Amesz, L. N. M. Duysens, D. C. Brandt, “Methods for measuring and correcting the absorption spectrum of scattering suspensions,” J. Theor. Biol. 1, 59–74 (1961).
    [CrossRef] [PubMed]
  23. D. A. Herms, W. J. Mattson, “The dilemma of plants: to grow or to defend,” Q. Rev. Biol. 67, 283–335 (1992).
    [CrossRef]
  24. A. Cartelat, Y. Goulas, C. Lelarge, A. Barbottin, M.-H. Jeuffroy, Z. G. Cerovic, “A new optical signature of nitrogen deficiency in wheat useful for decision support in precision agriculture,” in the Fourth European Conference on Precision Agriculture, A. Werner, A. Jarfe, eds. (WageningenAcademic, Berlin, 2003), pp. 377–379.

2003

M. N. Merzlyak, A. E. Solovchenko, A. A. Gitelson, “Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit,” Postharvest Biol. Technol. 27, 197–211 (2003).
[CrossRef]

2002

Z. G. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, I. Moya, “The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves,” Plant Cell Environ. 25, 1663–1676 (2002).
[CrossRef]

2001

W. Bilger, T. Johnsen, U. Schreiber, “UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants,” J. Exp. Bot. 52, 2007–2017 (2001).
[CrossRef] [PubMed]

A. Ounis, Z. G. Cerovic, J. M. Briantais, I. Moya, “Dual-excitation FLIDAR for the estimation of epidermal UV absorption in leaves and canopies,” Remote Sens. Environ. 76, 33–48 (2001).
[CrossRef]

2000

P. W. Barnes, P. S. Searles, C. L. Ballare, R. J. Ryel, M. M. Caldwell, “Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies,” Physiol. Plant. 109, 274–283 (2000).
[CrossRef]

P. Burchard, W. Bilger, G. Weissenbock, “Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements,” Plant Cell Environ. 23, 1373–1380 (2000).
[CrossRef]

1999

G. Samson, O. Prasil, B. Yaakoubd, “Photochemical and thermal phases of chlorophyll a fluorescence,” Photosynthetica 37, 163–182 (1999).
[CrossRef]

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agron. Agric. Environ. 19, 543–578 (1999).
[CrossRef]

1997

H. W. Trissl, “Determination of the quenching efficiency of the oxidized primary donor of Photosystem I, P700+: implications for the trapping mechanism,” Photosynth. Res. 54, 237–240 (1997).
[CrossRef]

W. Bilger, M. Veit, L. Schreiber, U. Schreiber, “Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence,” Physiol Plant 101, 754–763 (1997).
[CrossRef]

1994

T. A. Day, B. W. Howells, W. J. Rice, “Ultraviolet absorption and epidermal-transmittance spectra in foliage,” Physiol. Plant. 92, 207–218 (1994).
[CrossRef]

1992

D. A. Herms, W. J. Mattson, “The dilemma of plants: to grow or to defend,” Q. Rev. Biol. 67, 283–335 (1992).
[CrossRef]

D. S. Ellsworth, P. B. Reich, “Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments,” Funct. Ecol. 6, 423–435 (1992).
[CrossRef]

1991

G. Krause, E. Weis, “Chlorophyll fluorescence and photosynthesis: the basics,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349 (1991).
[CrossRef]

1989

K. Hahlbrock, D. Scheel, “Physiology and molecular biology of phenylpropanoid metabolism,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 347–369 (1989).
[CrossRef]

1988

J. F. Bornman, T. C. Vogelmann, “Penetration of blue and UV radiation measured by fiber optics in spruce and fir needles,” Physiol. Plant. 72, 699–705 (1988).
[CrossRef]

1985

P. D. Coley, J. P. Bryant, S. Chapin, “Resource availability and plant antiherbivore defense,” Science 230, 895–899 (1985).
[CrossRef] [PubMed]

1983

M. M. Caldwell, R. Robberecht, S. D. Flint, “Internal filters: prospects for UV-acclimation in higher plants,” Physiol. Plant. 58, 445–450 (1983).
[CrossRef]

1961

J. Amesz, L. N. M. Duysens, D. C. Brandt, “Methods for measuring and correcting the absorption spectrum of scattering suspensions,” J. Theor. Biol. 1, 59–74 (1961).
[CrossRef] [PubMed]

Agati, G.

A. Cartelat, Z. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.-L. Prioul, A. Barbottin, M.-H. Jeuffroy, P. Gate, G. Agati, I. Moya, “Optically assessed content of leaf polyphenolics and chlorophyll of leaves as indicators of nitrogen deficiency in wheat (Triticum aestivum L.),” Field Crops Res. (to be published).

Amesz, J.

J. Amesz, L. N. M. Duysens, D. C. Brandt, “Methods for measuring and correcting the absorption spectrum of scattering suspensions,” J. Theor. Biol. 1, 59–74 (1961).
[CrossRef] [PubMed]

Ballare, C. L.

P. W. Barnes, P. S. Searles, C. L. Ballare, R. J. Ryel, M. M. Caldwell, “Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies,” Physiol. Plant. 109, 274–283 (2000).
[CrossRef]

Barbottin, A.

A. Cartelat, Z. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.-L. Prioul, A. Barbottin, M.-H. Jeuffroy, P. Gate, G. Agati, I. Moya, “Optically assessed content of leaf polyphenolics and chlorophyll of leaves as indicators of nitrogen deficiency in wheat (Triticum aestivum L.),” Field Crops Res. (to be published).

A. Cartelat, Y. Goulas, C. Lelarge, A. Barbottin, M.-H. Jeuffroy, Z. G. Cerovic, “A new optical signature of nitrogen deficiency in wheat useful for decision support in precision agriculture,” in the Fourth European Conference on Precision Agriculture, A. Werner, A. Jarfe, eds. (WageningenAcademic, Berlin, 2003), pp. 377–379.

Barnes, P. W.

P. W. Barnes, P. S. Searles, C. L. Ballare, R. J. Ryel, M. M. Caldwell, “Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies,” Physiol. Plant. 109, 274–283 (2000).
[CrossRef]

Bilger, W.

W. Bilger, T. Johnsen, U. Schreiber, “UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants,” J. Exp. Bot. 52, 2007–2017 (2001).
[CrossRef] [PubMed]

P. Burchard, W. Bilger, G. Weissenbock, “Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements,” Plant Cell Environ. 23, 1373–1380 (2000).
[CrossRef]

W. Bilger, M. Veit, L. Schreiber, U. Schreiber, “Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence,” Physiol Plant 101, 754–763 (1997).
[CrossRef]

Bornman, J. F.

J. F. Bornman, T. C. Vogelmann, “Penetration of blue and UV radiation measured by fiber optics in spruce and fir needles,” Physiol. Plant. 72, 699–705 (1988).
[CrossRef]

Brandt, D. C.

J. Amesz, L. N. M. Duysens, D. C. Brandt, “Methods for measuring and correcting the absorption spectrum of scattering suspensions,” J. Theor. Biol. 1, 59–74 (1961).
[CrossRef] [PubMed]

Briantais, J. M.

A. Ounis, Z. G. Cerovic, J. M. Briantais, I. Moya, “Dual-excitation FLIDAR for the estimation of epidermal UV absorption in leaves and canopies,” Remote Sens. Environ. 76, 33–48 (2001).
[CrossRef]

Bryant, J. P.

P. D. Coley, J. P. Bryant, S. Chapin, “Resource availability and plant antiherbivore defense,” Science 230, 895–899 (1985).
[CrossRef] [PubMed]

Burchard, P.

P. Burchard, W. Bilger, G. Weissenbock, “Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements,” Plant Cell Environ. 23, 1373–1380 (2000).
[CrossRef]

Caldwell, M. M.

P. W. Barnes, P. S. Searles, C. L. Ballare, R. J. Ryel, M. M. Caldwell, “Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies,” Physiol. Plant. 109, 274–283 (2000).
[CrossRef]

M. M. Caldwell, R. Robberecht, S. D. Flint, “Internal filters: prospects for UV-acclimation in higher plants,” Physiol. Plant. 58, 445–450 (1983).
[CrossRef]

M. M. Caldwell, “Solar UV irradiation and the growth and development of higher plants,” in Photophysiology, A. C. Giese, ed. (Academic, New York, 1971), pp. 131–171.

Cartelat, A.

Z. G. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, I. Moya, “The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves,” Plant Cell Environ. 25, 1663–1676 (2002).
[CrossRef]

A. Cartelat, Z. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.-L. Prioul, A. Barbottin, M.-H. Jeuffroy, P. Gate, G. Agati, I. Moya, “Optically assessed content of leaf polyphenolics and chlorophyll of leaves as indicators of nitrogen deficiency in wheat (Triticum aestivum L.),” Field Crops Res. (to be published).

A. Cartelat, Y. Goulas, C. Lelarge, A. Barbottin, M.-H. Jeuffroy, Z. G. Cerovic, “A new optical signature of nitrogen deficiency in wheat useful for decision support in precision agriculture,” in the Fourth European Conference on Precision Agriculture, A. Werner, A. Jarfe, eds. (WageningenAcademic, Berlin, 2003), pp. 377–379.

Cerovic, Z.

A. Cartelat, Z. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.-L. Prioul, A. Barbottin, M.-H. Jeuffroy, P. Gate, G. Agati, I. Moya, “Optically assessed content of leaf polyphenolics and chlorophyll of leaves as indicators of nitrogen deficiency in wheat (Triticum aestivum L.),” Field Crops Res. (to be published).

Cerovic, Z. G.

Z. G. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, I. Moya, “The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves,” Plant Cell Environ. 25, 1663–1676 (2002).
[CrossRef]

A. Ounis, Z. G. Cerovic, J. M. Briantais, I. Moya, “Dual-excitation FLIDAR for the estimation of epidermal UV absorption in leaves and canopies,” Remote Sens. Environ. 76, 33–48 (2001).
[CrossRef]

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agron. Agric. Environ. 19, 543–578 (1999).
[CrossRef]

Z. G. Cerovic, Y. Goulas, I. Moya, “Device for measuring light absorption characteristics of a biological tissue sample,” Patent WO03029791 (10April2003).

A. Cartelat, Y. Goulas, C. Lelarge, A. Barbottin, M.-H. Jeuffroy, Z. G. Cerovic, “A new optical signature of nitrogen deficiency in wheat useful for decision support in precision agriculture,” in the Fourth European Conference on Precision Agriculture, A. Werner, A. Jarfe, eds. (WageningenAcademic, Berlin, 2003), pp. 377–379.

Chapin, S.

P. D. Coley, J. P. Bryant, S. Chapin, “Resource availability and plant antiherbivore defense,” Science 230, 895–899 (1985).
[CrossRef] [PubMed]

Coley, P. D.

P. D. Coley, J. P. Bryant, S. Chapin, “Resource availability and plant antiherbivore defense,” Science 230, 895–899 (1985).
[CrossRef] [PubMed]

Day, T. A.

T. A. Day, B. W. Howells, W. J. Rice, “Ultraviolet absorption and epidermal-transmittance spectra in foliage,” Physiol. Plant. 92, 207–218 (1994).
[CrossRef]

Duysens, L. N. M.

J. Amesz, L. N. M. Duysens, D. C. Brandt, “Methods for measuring and correcting the absorption spectrum of scattering suspensions,” J. Theor. Biol. 1, 59–74 (1961).
[CrossRef] [PubMed]

Ellsworth, D. S.

D. S. Ellsworth, P. B. Reich, “Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments,” Funct. Ecol. 6, 423–435 (1992).
[CrossRef]

Flint, S. D.

M. M. Caldwell, R. Robberecht, S. D. Flint, “Internal filters: prospects for UV-acclimation in higher plants,” Physiol. Plant. 58, 445–450 (1983).
[CrossRef]

Gate, P.

A. Cartelat, Z. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.-L. Prioul, A. Barbottin, M.-H. Jeuffroy, P. Gate, G. Agati, I. Moya, “Optically assessed content of leaf polyphenolics and chlorophyll of leaves as indicators of nitrogen deficiency in wheat (Triticum aestivum L.),” Field Crops Res. (to be published).

Gitelson, A. A.

M. N. Merzlyak, A. E. Solovchenko, A. A. Gitelson, “Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit,” Postharvest Biol. Technol. 27, 197–211 (2003).
[CrossRef]

Goulas, Y.

Z. G. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, I. Moya, “The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves,” Plant Cell Environ. 25, 1663–1676 (2002).
[CrossRef]

A. Cartelat, Z. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.-L. Prioul, A. Barbottin, M.-H. Jeuffroy, P. Gate, G. Agati, I. Moya, “Optically assessed content of leaf polyphenolics and chlorophyll of leaves as indicators of nitrogen deficiency in wheat (Triticum aestivum L.),” Field Crops Res. (to be published).

Z. G. Cerovic, Y. Goulas, I. Moya, “Device for measuring light absorption characteristics of a biological tissue sample,” Patent WO03029791 (10April2003).

A. Cartelat, Y. Goulas, C. Lelarge, A. Barbottin, M.-H. Jeuffroy, Z. G. Cerovic, “A new optical signature of nitrogen deficiency in wheat useful for decision support in precision agriculture,” in the Fourth European Conference on Precision Agriculture, A. Werner, A. Jarfe, eds. (WageningenAcademic, Berlin, 2003), pp. 377–379.

Hahlbrock, K.

K. Hahlbrock, D. Scheel, “Physiology and molecular biology of phenylpropanoid metabolism,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 347–369 (1989).
[CrossRef]

Herms, D. A.

D. A. Herms, W. J. Mattson, “The dilemma of plants: to grow or to defend,” Q. Rev. Biol. 67, 283–335 (1992).
[CrossRef]

Howells, B. W.

T. A. Day, B. W. Howells, W. J. Rice, “Ultraviolet absorption and epidermal-transmittance spectra in foliage,” Physiol. Plant. 92, 207–218 (1994).
[CrossRef]

Jeuffroy, M.-H.

A. Cartelat, Z. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.-L. Prioul, A. Barbottin, M.-H. Jeuffroy, P. Gate, G. Agati, I. Moya, “Optically assessed content of leaf polyphenolics and chlorophyll of leaves as indicators of nitrogen deficiency in wheat (Triticum aestivum L.),” Field Crops Res. (to be published).

A. Cartelat, Y. Goulas, C. Lelarge, A. Barbottin, M.-H. Jeuffroy, Z. G. Cerovic, “A new optical signature of nitrogen deficiency in wheat useful for decision support in precision agriculture,” in the Fourth European Conference on Precision Agriculture, A. Werner, A. Jarfe, eds. (WageningenAcademic, Berlin, 2003), pp. 377–379.

Johnsen, T.

W. Bilger, T. Johnsen, U. Schreiber, “UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants,” J. Exp. Bot. 52, 2007–2017 (2001).
[CrossRef] [PubMed]

Krause, G.

G. Krause, E. Weis, “Chlorophyll fluorescence and photosynthesis: the basics,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349 (1991).
[CrossRef]

Latouche, G.

Z. G. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, I. Moya, “The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves,” Plant Cell Environ. 25, 1663–1676 (2002).
[CrossRef]

Lelarge, C.

A. Cartelat, Z. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.-L. Prioul, A. Barbottin, M.-H. Jeuffroy, P. Gate, G. Agati, I. Moya, “Optically assessed content of leaf polyphenolics and chlorophyll of leaves as indicators of nitrogen deficiency in wheat (Triticum aestivum L.),” Field Crops Res. (to be published).

A. Cartelat, Y. Goulas, C. Lelarge, A. Barbottin, M.-H. Jeuffroy, Z. G. Cerovic, “A new optical signature of nitrogen deficiency in wheat useful for decision support in precision agriculture,” in the Fourth European Conference on Precision Agriculture, A. Werner, A. Jarfe, eds. (WageningenAcademic, Berlin, 2003), pp. 377–379.

Mattson, W. J.

D. A. Herms, W. J. Mattson, “The dilemma of plants: to grow or to defend,” Q. Rev. Biol. 67, 283–335 (1992).
[CrossRef]

Merzlyak, M. N.

M. N. Merzlyak, A. E. Solovchenko, A. A. Gitelson, “Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit,” Postharvest Biol. Technol. 27, 197–211 (2003).
[CrossRef]

Meyer, S.

Z. G. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, I. Moya, “The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves,” Plant Cell Environ. 25, 1663–1676 (2002).
[CrossRef]

A. Cartelat, Z. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.-L. Prioul, A. Barbottin, M.-H. Jeuffroy, P. Gate, G. Agati, I. Moya, “Optically assessed content of leaf polyphenolics and chlorophyll of leaves as indicators of nitrogen deficiency in wheat (Triticum aestivum L.),” Field Crops Res. (to be published).

Mole, S.

P. G. Waterman, S. Mole, Analysis of Phenolic Plant Metabolites, Methods in Ecology (Blackwell Scientific, Oxford, UK, 1994), p. 238.

Morales, F.

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agron. Agric. Environ. 19, 543–578 (1999).
[CrossRef]

Moya, I.

Z. G. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, I. Moya, “The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves,” Plant Cell Environ. 25, 1663–1676 (2002).
[CrossRef]

A. Ounis, Z. G. Cerovic, J. M. Briantais, I. Moya, “Dual-excitation FLIDAR for the estimation of epidermal UV absorption in leaves and canopies,” Remote Sens. Environ. 76, 33–48 (2001).
[CrossRef]

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agron. Agric. Environ. 19, 543–578 (1999).
[CrossRef]

A. Cartelat, Z. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.-L. Prioul, A. Barbottin, M.-H. Jeuffroy, P. Gate, G. Agati, I. Moya, “Optically assessed content of leaf polyphenolics and chlorophyll of leaves as indicators of nitrogen deficiency in wheat (Triticum aestivum L.),” Field Crops Res. (to be published).

Z. G. Cerovic, Y. Goulas, I. Moya, “Device for measuring light absorption characteristics of a biological tissue sample,” Patent WO03029791 (10April2003).

Ounis, A.

Z. G. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, I. Moya, “The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves,” Plant Cell Environ. 25, 1663–1676 (2002).
[CrossRef]

A. Ounis, Z. G. Cerovic, J. M. Briantais, I. Moya, “Dual-excitation FLIDAR for the estimation of epidermal UV absorption in leaves and canopies,” Remote Sens. Environ. 76, 33–48 (2001).
[CrossRef]

Prasil, O.

G. Samson, O. Prasil, B. Yaakoubd, “Photochemical and thermal phases of chlorophyll a fluorescence,” Photosynthetica 37, 163–182 (1999).
[CrossRef]

Prioul, J.-L.

A. Cartelat, Z. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.-L. Prioul, A. Barbottin, M.-H. Jeuffroy, P. Gate, G. Agati, I. Moya, “Optically assessed content of leaf polyphenolics and chlorophyll of leaves as indicators of nitrogen deficiency in wheat (Triticum aestivum L.),” Field Crops Res. (to be published).

Reich, P. B.

D. S. Ellsworth, P. B. Reich, “Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments,” Funct. Ecol. 6, 423–435 (1992).
[CrossRef]

Rice, W. J.

T. A. Day, B. W. Howells, W. J. Rice, “Ultraviolet absorption and epidermal-transmittance spectra in foliage,” Physiol. Plant. 92, 207–218 (1994).
[CrossRef]

Robberecht, R.

M. M. Caldwell, R. Robberecht, S. D. Flint, “Internal filters: prospects for UV-acclimation in higher plants,” Physiol. Plant. 58, 445–450 (1983).
[CrossRef]

Ryel, R. J.

P. W. Barnes, P. S. Searles, C. L. Ballare, R. J. Ryel, M. M. Caldwell, “Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies,” Physiol. Plant. 109, 274–283 (2000).
[CrossRef]

Samson, G.

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agron. Agric. Environ. 19, 543–578 (1999).
[CrossRef]

G. Samson, O. Prasil, B. Yaakoubd, “Photochemical and thermal phases of chlorophyll a fluorescence,” Photosynthetica 37, 163–182 (1999).
[CrossRef]

Scheel, D.

K. Hahlbrock, D. Scheel, “Physiology and molecular biology of phenylpropanoid metabolism,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 347–369 (1989).
[CrossRef]

Schreiber, L.

W. Bilger, M. Veit, L. Schreiber, U. Schreiber, “Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence,” Physiol Plant 101, 754–763 (1997).
[CrossRef]

Schreiber, U.

W. Bilger, T. Johnsen, U. Schreiber, “UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants,” J. Exp. Bot. 52, 2007–2017 (2001).
[CrossRef] [PubMed]

W. Bilger, M. Veit, L. Schreiber, U. Schreiber, “Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence,” Physiol Plant 101, 754–763 (1997).
[CrossRef]

Searles, P. S.

P. W. Barnes, P. S. Searles, C. L. Ballare, R. J. Ryel, M. M. Caldwell, “Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies,” Physiol. Plant. 109, 274–283 (2000).
[CrossRef]

Solovchenko, A. E.

M. N. Merzlyak, A. E. Solovchenko, A. A. Gitelson, “Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit,” Postharvest Biol. Technol. 27, 197–211 (2003).
[CrossRef]

Tremblay, N.

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agron. Agric. Environ. 19, 543–578 (1999).
[CrossRef]

Trissl, H. W.

H. W. Trissl, “Determination of the quenching efficiency of the oxidized primary donor of Photosystem I, P700+: implications for the trapping mechanism,” Photosynth. Res. 54, 237–240 (1997).
[CrossRef]

Veit, M.

W. Bilger, M. Veit, L. Schreiber, U. Schreiber, “Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence,” Physiol Plant 101, 754–763 (1997).
[CrossRef]

Vogelmann, T. C.

J. F. Bornman, T. C. Vogelmann, “Penetration of blue and UV radiation measured by fiber optics in spruce and fir needles,” Physiol. Plant. 72, 699–705 (1988).
[CrossRef]

Waterman, P. G.

P. G. Waterman, S. Mole, Analysis of Phenolic Plant Metabolites, Methods in Ecology (Blackwell Scientific, Oxford, UK, 1994), p. 238.

Weis, E.

G. Krause, E. Weis, “Chlorophyll fluorescence and photosynthesis: the basics,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349 (1991).
[CrossRef]

Weissenbock, G.

P. Burchard, W. Bilger, G. Weissenbock, “Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements,” Plant Cell Environ. 23, 1373–1380 (2000).
[CrossRef]

Yaakoubd, B.

G. Samson, O. Prasil, B. Yaakoubd, “Photochemical and thermal phases of chlorophyll a fluorescence,” Photosynthetica 37, 163–182 (1999).
[CrossRef]

Agron. Agric. Environ.

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agron. Agric. Environ. 19, 543–578 (1999).
[CrossRef]

Annu. Rev. Plant Physiol. Plant Mol. Biol.

K. Hahlbrock, D. Scheel, “Physiology and molecular biology of phenylpropanoid metabolism,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 347–369 (1989).
[CrossRef]

G. Krause, E. Weis, “Chlorophyll fluorescence and photosynthesis: the basics,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349 (1991).
[CrossRef]

Funct. Ecol.

D. S. Ellsworth, P. B. Reich, “Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments,” Funct. Ecol. 6, 423–435 (1992).
[CrossRef]

J. Exp. Bot.

W. Bilger, T. Johnsen, U. Schreiber, “UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants,” J. Exp. Bot. 52, 2007–2017 (2001).
[CrossRef] [PubMed]

J. Theor. Biol.

J. Amesz, L. N. M. Duysens, D. C. Brandt, “Methods for measuring and correcting the absorption spectrum of scattering suspensions,” J. Theor. Biol. 1, 59–74 (1961).
[CrossRef] [PubMed]

Photosynth. Res.

H. W. Trissl, “Determination of the quenching efficiency of the oxidized primary donor of Photosystem I, P700+: implications for the trapping mechanism,” Photosynth. Res. 54, 237–240 (1997).
[CrossRef]

Photosynthetica

G. Samson, O. Prasil, B. Yaakoubd, “Photochemical and thermal phases of chlorophyll a fluorescence,” Photosynthetica 37, 163–182 (1999).
[CrossRef]

Physiol Plant

W. Bilger, M. Veit, L. Schreiber, U. Schreiber, “Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence,” Physiol Plant 101, 754–763 (1997).
[CrossRef]

Physiol. Plant.

P. W. Barnes, P. S. Searles, C. L. Ballare, R. J. Ryel, M. M. Caldwell, “Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies,” Physiol. Plant. 109, 274–283 (2000).
[CrossRef]

T. A. Day, B. W. Howells, W. J. Rice, “Ultraviolet absorption and epidermal-transmittance spectra in foliage,” Physiol. Plant. 92, 207–218 (1994).
[CrossRef]

J. F. Bornman, T. C. Vogelmann, “Penetration of blue and UV radiation measured by fiber optics in spruce and fir needles,” Physiol. Plant. 72, 699–705 (1988).
[CrossRef]

M. M. Caldwell, R. Robberecht, S. D. Flint, “Internal filters: prospects for UV-acclimation in higher plants,” Physiol. Plant. 58, 445–450 (1983).
[CrossRef]

Plant Cell Environ.

Z. G. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer, I. Moya, “The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves,” Plant Cell Environ. 25, 1663–1676 (2002).
[CrossRef]

P. Burchard, W. Bilger, G. Weissenbock, “Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements,” Plant Cell Environ. 23, 1373–1380 (2000).
[CrossRef]

Postharvest Biol. Technol.

M. N. Merzlyak, A. E. Solovchenko, A. A. Gitelson, “Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit,” Postharvest Biol. Technol. 27, 197–211 (2003).
[CrossRef]

Q. Rev. Biol.

D. A. Herms, W. J. Mattson, “The dilemma of plants: to grow or to defend,” Q. Rev. Biol. 67, 283–335 (1992).
[CrossRef]

Remote Sens. Environ.

A. Ounis, Z. G. Cerovic, J. M. Briantais, I. Moya, “Dual-excitation FLIDAR for the estimation of epidermal UV absorption in leaves and canopies,” Remote Sens. Environ. 76, 33–48 (2001).
[CrossRef]

Science

P. D. Coley, J. P. Bryant, S. Chapin, “Resource availability and plant antiherbivore defense,” Science 230, 895–899 (1985).
[CrossRef] [PubMed]

Other

P. G. Waterman, S. Mole, Analysis of Phenolic Plant Metabolites, Methods in Ecology (Blackwell Scientific, Oxford, UK, 1994), p. 238.

M. M. Caldwell, “Solar UV irradiation and the growth and development of higher plants,” in Photophysiology, A. C. Giese, ed. (Academic, New York, 1971), pp. 131–171.

Z. G. Cerovic, Y. Goulas, I. Moya, “Device for measuring light absorption characteristics of a biological tissue sample,” Patent WO03029791 (10April2003).

A. Cartelat, Z. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J.-L. Prioul, A. Barbottin, M.-H. Jeuffroy, P. Gate, G. Agati, I. Moya, “Optically assessed content of leaf polyphenolics and chlorophyll of leaves as indicators of nitrogen deficiency in wheat (Triticum aestivum L.),” Field Crops Res. (to be published).

A. Cartelat, Y. Goulas, C. Lelarge, A. Barbottin, M.-H. Jeuffroy, Z. G. Cerovic, “A new optical signature of nitrogen deficiency in wheat useful for decision support in precision agriculture,” in the Fourth European Conference on Precision Agriculture, A. Werner, A. Jarfe, eds. (WageningenAcademic, Berlin, 2003), pp. 377–379.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Emission spectra of the UV and the reference red-light sources compared with absorption spectra of chlorophylls and fluorescence spectra of leaves. (a) Absorption spectra of chlorophyll a (Chl a) and chlorophyll b (Chl b) in methanol (MeOH). (b) Fluorescence excitation spectrum of a wheat leaf (emission wavelength 740 nm, total Chl content 50 μg/cm2). (c) Emission spectra of filtered UV and red-light sources compared with the back-side leaf’s Chl fluorescence emission (excitation wavelength 375 nm) and the transmittance spectrum of the emission filter (dashed curve).

Fig. 2
Fig. 2

Utilization of the Dualex clip for measurement of the epidermis leaf’s UV absorbance.

Fig. 3
Fig. 3

Schematic diagram of the Dualex. A feedback loop minimizes the difference between UV-induced and red-induced fluorescence, canceling effects caused by variable chlorophyll fluorescence. AD, analog-to-digital.

Fig. 4
Fig. 4

Induction kinetics of chlorophyll fluorescence emission as seen by the detection photodiode (solid curve) and of the mean red-light level (dashed curve). (a) Illustration of the feedback loop functioning (short time scale). At time t = 0, UV light is suddenly increased. The fluorescence level then oscillates between the UV-induced level (0.5-ms pulses, top of the curve) and the red-induced level (0.5-ms inversed pulses, bottom of the curve) until the two levels become equal after 15 ms. (b) Measurement on a leaf. No oscillations of fluorescence emission can be seen. After 300 ms of illumination, the power of the red LED, which is a measure of epidermal UV absorbance, remains constant despite a large variation in chlorophyll fluorescence.

Fig. 5
Fig. 5

Optical power of the red LED as a function of the driving current (log-log scale). The relationship is not linear over several decades.

Fig. 6
Fig. 6

Absorbance measurement of different combinations of thin plastic filters. We obtained Dualex values by covering an indoor-grown leaf with the filters (uncovered leaf value = 0.03). Spectrophotometer values were measured at 30° incidence. Error bars are standard deviations of the mean (visible only on the last point).

Fig. 7
Fig. 7

Comparison of Dualex values with wheat leaf extracts (absorbance at 375 nm). Dualex values are the sum of adaxial and abaxial side measurements. Absorption spectra were corrected in the UV for Chl-a and Chl-b contributions.

Fig. 8
Fig. 8

Phen in leaves of a beech tree. Correlation between the total Phen content of leaves measured with the Dualex and their leaf mass per area.

Tables (1)

Tables Icon

Table 1 Sources of Measurements’ Variability

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

FUVFREF=TUVϕUVϕREFIUVIREF.
TUVϕUVϕREF IUV=IREF.
TUV=IREFI0REF.
A=-log10IREFI0REF.

Metrics