Abstract

Even in the semiconductor industry, free-space optical technology is nowadays seen as a prime option for solving the continually aggravating problem with VLSI chips, namely, that the interconnect technology has failed to keep pace with the increase in communication volume. To make free-space optics compatible with established lithography-based design and fabrication techniques the concept of planar integration was proposed approximately a decade ago. Here its evolution into a photonic microsystems engineering concept is described. For demonstration, a multichip module with planar-integrated free-space optical vector-matrix-type interconnects was designed and built. It contains flip-chip-bonded vertical-cavity surface emitting laser arrays and a hybrid chip with an array of multiple-quantum-well p-i-n diodes on top of a standard complementary metal-oxide semiconductor circuit as key optoelectronic hardware components. The optical system is integrated into a handy fused-silica substrate and fabricated with surface-relief diffractive phase elements. It has been optimized for the given geometrical and technological constraints and provides a good interconnection performance, as was verified in computer simulations on the basis of ray tracing and in practical experiments.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).
  2. For the International Technology Roadmap for Semiconductors, see http://public.itrs.net/ .
  3. Y. Lee, E. Towe, M. W. Haney, eds., issue on optical interconnections for digital systems, Proc. IEEE88, 723–863 (2000).
    [CrossRef]
  4. IEEE/LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002).
  5. F. Tooley, “Optical interconnects do not require improved optoelectronic devices,” in Optics in Computing ’98, P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 14–17 (1998).
    [CrossRef]
  6. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
    [CrossRef]
  7. K. Iga, M. Oikawa, S. Misawa, J. Banno, Y. Kokubun, “Stacked planar optics: an application of the planar microlens,” Appl. Opt. 21, 3456–3460 (1982).
    [CrossRef] [PubMed]
  8. M. C. Wu, “Micromachining for optical and optoelectronic systems,” Proc. IEEE 85, 1833–1856 (1997).
    [CrossRef]
  9. J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
    [CrossRef] [PubMed]
  10. J. Jahns, “Planar packaging of free-space optical interconnections,” Proc. IEEE 82, 1623–1631 (1994).
    [CrossRef]
  11. S. Sinzinger, J. Jahns, Microoptics (Wiley, Weinheim, Germany, 1999).
  12. H.-P. Herzig, ed., Micro-Optics (Taylor & Francis, London, 1997).
  13. S. Sinzinger, J. Jahns, “Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
    [CrossRef] [PubMed]
  14. W. Eckert, V. Arrizon, S. Sinzinger, J. Jahns, “Compact planar-integrated optical correlator for spatially incoherent signals,” Appl. Opt. 39, 759–765 (2000).
    [CrossRef]
  15. D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
    [CrossRef]
  16. P. Lukowicz, J. Grzyb, R. Barbieri, G. Tröster, S. Fancey, M. Gruber, J. Jahns, W. Tichy, “Opto-electronic multichip modules: making optical interconnection packaging compatible with electronic assembly technology,” Opt. Mem. Neural Netw. 11, 239–244 (2002).
  17. C. Gimkiewicz, J. Jahns, “Thermal management of VCSEL diode arrays in integrated planar free-space optical systems,” presented at the Microsystem Technologies 98 meeting, Potsdam, Germany, 1–3 December 1998.
  18. M. Gruber, E. ElJoudi, S. Sinzinger, J. Jahns, “Practical realization of massively parallel fiber-free-space optical interconnects,” Appl. Opt. 40, 2902–2908 (2001).
    [CrossRef]
  19. K.-H. Gulden, S. Eitel, S. Hunziker, D. Vez, C. Gimkiewicz, M. T. Gale, M. Moser, “High density VCSEL arrays,” in 2002 IEEE/LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 129–130.
  20. K. W. Goossen, J. A. Walker, L. A. D’Asaro, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulator integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
    [CrossRef]
  21. A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2, 55–76 (1996).
    [CrossRef]
  22. A. V. Krishnamoorthy, K. W. Goossen, “Optoelectronic-VLSI: photonics integrated with VLSI circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 899–912 (1998).
    [CrossRef]
  23. C. B. Kuznia, “Flip chip bonded optoelectronic devices on ultra-thin silicon-on-sapphire for parallel optical links,” in Optics in Computing, Vol. 48 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 134–136.
  24. P. S. Guilfoyle, D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. 35, 3–9 (1996).
    [CrossRef]
  25. R. Hecht-Nielsen, Neurocomputing (Addison-Wesley, Reading, Mass., 1990).
  26. J. W. Goodman, A. R. Diaz, L. M. Woody, “Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms,” Opt. Lett. 2, 1–3 (1978).
    [CrossRef] [PubMed]
  27. A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” Computer 20(10) 50–60 (1987).
    [CrossRef]
  28. K.-H. Brenner, T. Merklein, “Implementation of an optical crossbar network based on directional switches,” Appl. Opt. 31, 2446–2451 (1992).
    [CrossRef] [PubMed]
  29. C. P. Barrett, P. Blair, G. S. Buller, D. T. Neilson, B. Robertson, E. C. Smith, M. R. Tagizadeh, A. C. Walker, “Components for the implementation of free-space optical crossbars,” Appl. Opt. 35, 6934–6944 (1996).
    [CrossRef] [PubMed]
  30. M. Gruber, S. Sinzinger, J. Jahns, “Planar-integrated optical vector-matrix multiplier,” Appl. Opt. 39, 5367–5373 (2000).
    [CrossRef]
  31. For information on the CO-OP program, see the URL http://www.bell-labs.com/project/oevlsi/ .
  32. M. Testorf, J. Jahns, “Imaging properties of planar-integrated microoptics,” J. Opt. Soc. Am. A 16, 1175–1183 (1999).
    [CrossRef]
  33. F. Wyrowski, O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5, 1058–1065 (1988).
    [CrossRef]
  34. M. Gruber, D. Hagedorn, W. Eckert, “Precise and simple optical alignment method for double-sided lithography,” Appl. Opt. 40, 5052–5055 (2001).
    [CrossRef]
  35. For information on the HOLMS, see the URL http://www.phy.hw.ac.uk/phykjs/OIC/HOLMS/general/home/home.html .

2002 (1)

P. Lukowicz, J. Grzyb, R. Barbieri, G. Tröster, S. Fancey, M. Gruber, J. Jahns, W. Tichy, “Opto-electronic multichip modules: making optical interconnection packaging compatible with electronic assembly technology,” Opt. Mem. Neural Netw. 11, 239–244 (2002).

2001 (2)

2000 (4)

M. Gruber, S. Sinzinger, J. Jahns, “Planar-integrated optical vector-matrix multiplier,” Appl. Opt. 39, 5367–5373 (2000).
[CrossRef]

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[CrossRef]

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

W. Eckert, V. Arrizon, S. Sinzinger, J. Jahns, “Compact planar-integrated optical correlator for spatially incoherent signals,” Appl. Opt. 39, 759–765 (2000).
[CrossRef]

1999 (1)

1998 (1)

A. V. Krishnamoorthy, K. W. Goossen, “Optoelectronic-VLSI: photonics integrated with VLSI circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 899–912 (1998).
[CrossRef]

1997 (3)

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).

M. C. Wu, “Micromachining for optical and optoelectronic systems,” Proc. IEEE 85, 1833–1856 (1997).
[CrossRef]

S. Sinzinger, J. Jahns, “Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
[CrossRef] [PubMed]

1996 (3)

C. P. Barrett, P. Blair, G. S. Buller, D. T. Neilson, B. Robertson, E. C. Smith, M. R. Tagizadeh, A. C. Walker, “Components for the implementation of free-space optical crossbars,” Appl. Opt. 35, 6934–6944 (1996).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2, 55–76 (1996).
[CrossRef]

P. S. Guilfoyle, D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. 35, 3–9 (1996).
[CrossRef]

1995 (1)

K. W. Goossen, J. A. Walker, L. A. D’Asaro, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulator integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

1994 (1)

J. Jahns, “Planar packaging of free-space optical interconnections,” Proc. IEEE 82, 1623–1631 (1994).
[CrossRef]

1992 (1)

1989 (1)

1988 (1)

1987 (1)

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” Computer 20(10) 50–60 (1987).
[CrossRef]

1982 (1)

1978 (1)

Arrizon, V.

Bacon, D. D.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulator integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Banno, J.

Barbieri, R.

P. Lukowicz, J. Grzyb, R. Barbieri, G. Tröster, S. Fancey, M. Gruber, J. Jahns, W. Tichy, “Opto-electronic multichip modules: making optical interconnection packaging compatible with electronic assembly technology,” Opt. Mem. Neural Netw. 11, 239–244 (2002).

Barrett, C. P.

Bartelt, H.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

Blair, P.

Brenner, K.-H.

Bryngdahl, O.

Buller, G. S.

Chirovsky, L. M.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulator integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

D’Asaro, L. A.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulator integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Dahringer, D.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulator integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Diaz, A. R.

Eckert, W.

Eitel, S.

K.-H. Gulden, S. Eitel, S. Hunziker, D. Vez, C. Gimkiewicz, M. T. Gale, M. Moser, “High density VCSEL arrays,” in 2002 IEEE/LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 129–130.

ElJoudi, E.

Erhard, W.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

Fancey, S.

P. Lukowicz, J. Grzyb, R. Barbieri, G. Tröster, S. Fancey, M. Gruber, J. Jahns, W. Tichy, “Opto-electronic multichip modules: making optical interconnection packaging compatible with electronic assembly technology,” Opt. Mem. Neural Netw. 11, 239–244 (2002).

Fey, D.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

Gale, M. T.

K.-H. Gulden, S. Eitel, S. Hunziker, D. Vez, C. Gimkiewicz, M. T. Gale, M. Moser, “High density VCSEL arrays,” in 2002 IEEE/LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 129–130.

Gimkiewicz, C.

K.-H. Gulden, S. Eitel, S. Hunziker, D. Vez, C. Gimkiewicz, M. T. Gale, M. Moser, “High density VCSEL arrays,” in 2002 IEEE/LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 129–130.

C. Gimkiewicz, J. Jahns, “Thermal management of VCSEL diode arrays in integrated planar free-space optical systems,” presented at the Microsystem Technologies 98 meeting, Potsdam, Germany, 1–3 December 1998.

Goodman, J. W.

Goossen, K. W.

A. V. Krishnamoorthy, K. W. Goossen, “Optoelectronic-VLSI: photonics integrated with VLSI circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 899–912 (1998).
[CrossRef]

K. W. Goossen, J. A. Walker, L. A. D’Asaro, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulator integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Grimm, G.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

Gruber, M.

P. Lukowicz, J. Grzyb, R. Barbieri, G. Tröster, S. Fancey, M. Gruber, J. Jahns, W. Tichy, “Opto-electronic multichip modules: making optical interconnection packaging compatible with electronic assembly technology,” Opt. Mem. Neural Netw. 11, 239–244 (2002).

M. Gruber, D. Hagedorn, W. Eckert, “Precise and simple optical alignment method for double-sided lithography,” Appl. Opt. 40, 5052–5055 (2001).
[CrossRef]

M. Gruber, E. ElJoudi, S. Sinzinger, J. Jahns, “Practical realization of massively parallel fiber-free-space optical interconnects,” Appl. Opt. 40, 2902–2908 (2001).
[CrossRef]

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

M. Gruber, S. Sinzinger, J. Jahns, “Planar-integrated optical vector-matrix multiplier,” Appl. Opt. 39, 5367–5373 (2000).
[CrossRef]

Grzyb, J.

P. Lukowicz, J. Grzyb, R. Barbieri, G. Tröster, S. Fancey, M. Gruber, J. Jahns, W. Tichy, “Opto-electronic multichip modules: making optical interconnection packaging compatible with electronic assembly technology,” Opt. Mem. Neural Netw. 11, 239–244 (2002).

Guilfoyle, P. S.

P. S. Guilfoyle, D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. 35, 3–9 (1996).
[CrossRef]

Gulden, K.-H.

K.-H. Gulden, S. Eitel, S. Hunziker, D. Vez, C. Gimkiewicz, M. T. Gale, M. Moser, “High density VCSEL arrays,” in 2002 IEEE/LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 129–130.

Hagedorn, D.

Hecht-Nielsen, R.

R. Hecht-Nielsen, Neurocomputing (Addison-Wesley, Reading, Mass., 1990).

Hoppe, L.

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

Huang, A.

Hunziker, S.

K.-H. Gulden, S. Eitel, S. Hunziker, D. Vez, C. Gimkiewicz, M. T. Gale, M. Moser, “High density VCSEL arrays,” in 2002 IEEE/LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 129–130.

Iga, K.

Jahns, J.

P. Lukowicz, J. Grzyb, R. Barbieri, G. Tröster, S. Fancey, M. Gruber, J. Jahns, W. Tichy, “Opto-electronic multichip modules: making optical interconnection packaging compatible with electronic assembly technology,” Opt. Mem. Neural Netw. 11, 239–244 (2002).

M. Gruber, E. ElJoudi, S. Sinzinger, J. Jahns, “Practical realization of massively parallel fiber-free-space optical interconnects,” Appl. Opt. 40, 2902–2908 (2001).
[CrossRef]

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

M. Gruber, S. Sinzinger, J. Jahns, “Planar-integrated optical vector-matrix multiplier,” Appl. Opt. 39, 5367–5373 (2000).
[CrossRef]

W. Eckert, V. Arrizon, S. Sinzinger, J. Jahns, “Compact planar-integrated optical correlator for spatially incoherent signals,” Appl. Opt. 39, 759–765 (2000).
[CrossRef]

M. Testorf, J. Jahns, “Imaging properties of planar-integrated microoptics,” J. Opt. Soc. Am. A 16, 1175–1183 (1999).
[CrossRef]

S. Sinzinger, J. Jahns, “Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
[CrossRef] [PubMed]

J. Jahns, “Planar packaging of free-space optical interconnections,” Proc. IEEE 82, 1623–1631 (1994).
[CrossRef]

J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
[CrossRef] [PubMed]

S. Sinzinger, J. Jahns, Microoptics (Wiley, Weinheim, Germany, 1999).

C. Gimkiewicz, J. Jahns, “Thermal management of VCSEL diode arrays in integrated planar free-space optical systems,” presented at the Microsystem Technologies 98 meeting, Potsdam, Germany, 1–3 December 1998.

Jenkins, B. K.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” Computer 20(10) 50–60 (1987).
[CrossRef]

Kokubun, Y.

Kossives, D.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulator integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, K. W. Goossen, “Optoelectronic-VLSI: photonics integrated with VLSI circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 899–912 (1998).
[CrossRef]

A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2, 55–76 (1996).
[CrossRef]

Kuznia, C. B.

C. B. Kuznia, “Flip chip bonded optoelectronic devices on ultra-thin silicon-on-sapphire for parallel optical links,” in Optics in Computing, Vol. 48 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 134–136.

Leibenguth, R.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulator integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Lentine, A. L.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulator integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Lukowicz, P.

P. Lukowicz, J. Grzyb, R. Barbieri, G. Tröster, S. Fancey, M. Gruber, J. Jahns, W. Tichy, “Opto-electronic multichip modules: making optical interconnection packaging compatible with electronic assembly technology,” Opt. Mem. Neural Netw. 11, 239–244 (2002).

McCallum, D. S.

P. S. Guilfoyle, D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. 35, 3–9 (1996).
[CrossRef]

Merklein, T.

Miller, D. A. B.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[CrossRef]

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).

A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2, 55–76 (1996).
[CrossRef]

K. W. Goossen, J. A. Walker, L. A. D’Asaro, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulator integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Misawa, S.

Moser, M.

K.-H. Gulden, S. Eitel, S. Hunziker, D. Vez, C. Gimkiewicz, M. T. Gale, M. Moser, “High density VCSEL arrays,” in 2002 IEEE/LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 129–130.

Neilson, D. T.

Oikawa, M.

Raghavendra, C. S.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” Computer 20(10) 50–60 (1987).
[CrossRef]

Robertson, B.

Sawchuk, A. A.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” Computer 20(10) 50–60 (1987).
[CrossRef]

Sinzinger, S.

Smith, E. C.

Tagizadeh, M. R.

Testorf, M.

Tichy, W.

P. Lukowicz, J. Grzyb, R. Barbieri, G. Tröster, S. Fancey, M. Gruber, J. Jahns, W. Tichy, “Opto-electronic multichip modules: making optical interconnection packaging compatible with electronic assembly technology,” Opt. Mem. Neural Netw. 11, 239–244 (2002).

Tooley, F.

F. Tooley, “Optical interconnects do not require improved optoelectronic devices,” in Optics in Computing ’98, P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 14–17 (1998).
[CrossRef]

Tröster, G.

P. Lukowicz, J. Grzyb, R. Barbieri, G. Tröster, S. Fancey, M. Gruber, J. Jahns, W. Tichy, “Opto-electronic multichip modules: making optical interconnection packaging compatible with electronic assembly technology,” Opt. Mem. Neural Netw. 11, 239–244 (2002).

Tseng, B.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulator integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Varma, A.

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” Computer 20(10) 50–60 (1987).
[CrossRef]

Vez, D.

K.-H. Gulden, S. Eitel, S. Hunziker, D. Vez, C. Gimkiewicz, M. T. Gale, M. Moser, “High density VCSEL arrays,” in 2002 IEEE/LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 129–130.

Walker, A. C.

Walker, J. A.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulator integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Woody, L. M.

Wu, M. C.

M. C. Wu, “Micromachining for optical and optoelectronic systems,” Proc. IEEE 85, 1833–1856 (1997).
[CrossRef]

Wyrowski, F.

Appl. Opt. (9)

K. Iga, M. Oikawa, S. Misawa, J. Banno, Y. Kokubun, “Stacked planar optics: an application of the planar microlens,” Appl. Opt. 21, 3456–3460 (1982).
[CrossRef] [PubMed]

K.-H. Brenner, T. Merklein, “Implementation of an optical crossbar network based on directional switches,” Appl. Opt. 31, 2446–2451 (1992).
[CrossRef] [PubMed]

S. Sinzinger, J. Jahns, “Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
[CrossRef] [PubMed]

C. P. Barrett, P. Blair, G. S. Buller, D. T. Neilson, B. Robertson, E. C. Smith, M. R. Tagizadeh, A. C. Walker, “Components for the implementation of free-space optical crossbars,” Appl. Opt. 35, 6934–6944 (1996).
[CrossRef] [PubMed]

W. Eckert, V. Arrizon, S. Sinzinger, J. Jahns, “Compact planar-integrated optical correlator for spatially incoherent signals,” Appl. Opt. 39, 759–765 (2000).
[CrossRef]

J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
[CrossRef] [PubMed]

M. Gruber, S. Sinzinger, J. Jahns, “Planar-integrated optical vector-matrix multiplier,” Appl. Opt. 39, 5367–5373 (2000).
[CrossRef]

M. Gruber, E. ElJoudi, S. Sinzinger, J. Jahns, “Practical realization of massively parallel fiber-free-space optical interconnects,” Appl. Opt. 40, 2902–2908 (2001).
[CrossRef]

M. Gruber, D. Hagedorn, W. Eckert, “Precise and simple optical alignment method for double-sided lithography,” Appl. Opt. 40, 5052–5055 (2001).
[CrossRef]

Computer (1)

A. A. Sawchuk, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar networks,” Computer 20(10) 50–60 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2, 55–76 (1996).
[CrossRef]

A. V. Krishnamoorthy, K. W. Goossen, “Optoelectronic-VLSI: photonics integrated with VLSI circuits,” IEEE J. Sel. Top. Quantum Electron. 4, 899–912 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. W. Goossen, J. A. Walker, L. A. D’Asaro, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulator integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Int. J. Optoelectron. (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

P. S. Guilfoyle, D. S. McCallum, “High-speed low-energy digital optical processors,” Opt. Eng. 35, 3–9 (1996).
[CrossRef]

Opt. Lett. (1)

Opt. Mem. Neural Netw. (1)

P. Lukowicz, J. Grzyb, R. Barbieri, G. Tröster, S. Fancey, M. Gruber, J. Jahns, W. Tichy, “Opto-electronic multichip modules: making optical interconnection packaging compatible with electronic assembly technology,” Opt. Mem. Neural Netw. 11, 239–244 (2002).

Proc. IEEE (4)

D. Fey, W. Erhard, M. Gruber, J. Jahns, H. Bartelt, G. Grimm, L. Hoppe, S. Sinzinger, “Optical interconnects for neural and reconfigurable VLSI architectures,” Proc. IEEE 88, 838–848 (2000).
[CrossRef]

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[CrossRef]

J. Jahns, “Planar packaging of free-space optical interconnections,” Proc. IEEE 82, 1623–1631 (1994).
[CrossRef]

M. C. Wu, “Micromachining for optical and optoelectronic systems,” Proc. IEEE 85, 1833–1856 (1997).
[CrossRef]

Other (12)

For information on the HOLMS, see the URL http://www.phy.hw.ac.uk/phykjs/OIC/HOLMS/general/home/home.html .

For information on the CO-OP program, see the URL http://www.bell-labs.com/project/oevlsi/ .

S. Sinzinger, J. Jahns, Microoptics (Wiley, Weinheim, Germany, 1999).

H.-P. Herzig, ed., Micro-Optics (Taylor & Francis, London, 1997).

K.-H. Gulden, S. Eitel, S. Hunziker, D. Vez, C. Gimkiewicz, M. T. Gale, M. Moser, “High density VCSEL arrays,” in 2002 IEEE/LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 129–130.

For the International Technology Roadmap for Semiconductors, see http://public.itrs.net/ .

Y. Lee, E. Towe, M. W. Haney, eds., issue on optical interconnections for digital systems, Proc. IEEE88, 723–863 (2000).
[CrossRef]

IEEE/LEOS Annual Meeting Conference Proceedings (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002).

F. Tooley, “Optical interconnects do not require improved optoelectronic devices,” in Optics in Computing ’98, P. H. Chavel, D. A. Miller, H. Thienpont, eds., Proc. SPIE3490, 14–17 (1998).
[CrossRef]

C. Gimkiewicz, J. Jahns, “Thermal management of VCSEL diode arrays in integrated planar free-space optical systems,” presented at the Microsystem Technologies 98 meeting, Potsdam, Germany, 1–3 December 1998.

R. Hecht-Nielsen, Neurocomputing (Addison-Wesley, Reading, Mass., 1990).

C. B. Kuznia, “Flip chip bonded optoelectronic devices on ultra-thin silicon-on-sapphire for parallel optical links,” in Optics in Computing, Vol. 48 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 134–136.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic drawing that shows the current level of development of planar-integrated photonic microsystems.

Fig. 2
Fig. 2

VM-type optical interconnects implemented by means of two anamorphic imaging stages (here depicted as cylindrical lenses).

Fig. 3
Fig. 3

Schematic of the optoelectronic MCM with a planar-integrated version of the VM-type interconnects of Fig. 2 and a second optical fan-out stage for optical programming of the modulator chip.

Fig. 4
Fig. 4

Micrograph of the hybrid modulator chip that was later bonded onto the electrical substrate of the MCM.

Fig. 5
Fig. 5

Performance of a MQW p-i-n diode operated as an optical modulator in a test before bonding of the chip. (Courtesy of L. Hoppe, Institute for Physical High Technology, Jena, Germany.)

Fig. 6
Fig. 6

Components of the optical fan-out and fan-in stages and their functions in the two principal cross sections.

Fig. 7
Fig. 7

Pseudo-three-dimensional and top views of ray tracing simulations of the fan-out stage with an on-axis and an off-axis signal source.

Fig. 8
Fig. 8

Spot patterns obtained from the simulations shown in Fig. 7 for signals (I)–(IV). Filled squares, the size and ideal position of the respective modulator elements.

Fig. 9
Fig. 9

(a) Optical substrate of the MCM mounted for experimental tests. (b) Fully populated electrical substrate of the MCM; for better mechanical stability the optoelectronic chips were fixed with glue in addition to flip-chip bonding.

Fig. 10
Fig. 10

One of the bonded VCSEL chips viewed through the electrical substrate. In the blowup, one of the VCSELs is switched on and emits light with a wavelength of 850 nm.

Fig. 11
Fig. 11

Fully assembled experimental demonstrator of the optoelectronic MCM with VM-type optical interconnects.

Fig. 12
Fig. 12

Experimental demonstration of the optical fan-out. The optical signals exactly hit their respective targets, in this case semitransparent micromirrors of size 20 μm × 20 μm.

Tables (1)

Tables Icon

Table 1 Focal Lengths in the xz- and the yz Cross Sections, Dimensions, and Center Positions of the Optical Elements Depicted in Fig. 6a

Metrics