Abstract

We present a method of external-cavity diode-laser grating stabilization that combines the high output power of the Littrow design with the fixed output pointing of the Littman-Metcalf design. Our new approach utilizes a Faraday-effect optical isolator inside the external cavity. Experimental testing and a model that describes the tuning range and optimal tuning parameters of the laser are described. Preliminary testing of this design has resulted in a short-term linewidth of 360 kHz and a side-mode suppression of 37 dB. The laser tunes mode hop free over 7 GHz, and we predict that much larger tuning ranges are possible.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
    [CrossRef]
  2. K. G. Libbrecht, J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133–2135 (1993).
    [CrossRef]
  3. C. C. Bradley, J. Chen, R. G. Hulet, “Instrumentation for the stable operation of laser diodes,” Rev. Sci. Instrum. 61, 2097–2101 (1990).
    [CrossRef]
  4. T. W. Hänsch, “Repetitively pulsed tunable dye laser for high resolution spectroscopy,” Appl. Opt. 11, 895–898 (1972).
    [CrossRef] [PubMed]
  5. M. G. Littman, H. J. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17, 2224–2227 (1978).
    [CrossRef] [PubMed]
  6. I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
    [CrossRef]
  7. K. Liu, M. G. Littman, “Novel geometry for single-mode scanning of tunable lasers,” Opt. Lett. 6, 117–118 (1981).
    [CrossRef] [PubMed]
  8. P. McNicholl, H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings,” Appl. Opt. 24, 2757–2761 (1985).
    [CrossRef] [PubMed]
  9. Sacher Lasertechnik, “Technical Note—No. 13, Littrow vs. Littman Laser, a comparison,” retrieved 11March2004, http://data.sacher-laser.com/techdocs/comparison.pdf .
  10. P. Bouyer, T. L. Gustavson, K. G. Haritos, M. A. Kasevich, “Microwave signal generation with optical injection locking,” Opt. Lett. 21, 1502–1504 (1996).
    [CrossRef] [PubMed]
  11. D. J. Binks, D. K. Ko, L. A. W. Gloster, T. A. King, “Laser mode selection in multiarm grazing-incidence cavities,” J. Opt. Soc. Am. B 15, 2395–2402 (1998).
    [CrossRef]
  12. G. Z. Zhang, D. W. Tokaryk, “Lasing threshold reduction in grating-tuned cavities,” Appl. Opt. 36, 5855–5858 (1997).
    [CrossRef] [PubMed]
  13. C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
    [CrossRef]
  14. CircuLaser diodes have a cylindrical lens mounted in the 9-mm package to produce a beam with symmetric divergence.
  15. G.-Y. Yan, A. L. Schawlow, “Measurement of diode laser characteristics affecting tunability with an external grating,” J. Opt. Soc. Am. B 9, 2122–2127 (1992).
    [CrossRef]

2001 (1)

C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

1993 (1)

K. G. Libbrecht, J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133–2135 (1993).
[CrossRef]

1992 (1)

1991 (1)

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

1990 (1)

C. C. Bradley, J. Chen, R. G. Hulet, “Instrumentation for the stable operation of laser diodes,” Rev. Sci. Instrum. 61, 2097–2101 (1990).
[CrossRef]

1985 (1)

1981 (1)

1978 (1)

1977 (1)

I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

1972 (1)

Binks, D. J.

Bouyer, P.

Bradley, C. C.

C. C. Bradley, J. Chen, R. G. Hulet, “Instrumentation for the stable operation of laser diodes,” Rev. Sci. Instrum. 61, 2097–2101 (1990).
[CrossRef]

Chen, J.

C. C. Bradley, J. Chen, R. G. Hulet, “Instrumentation for the stable operation of laser diodes,” Rev. Sci. Instrum. 61, 2097–2101 (1990).
[CrossRef]

Danon, N. N.

I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

Gloster, L. A. W.

Gustavson, T. L.

Hall, J. L.

K. G. Libbrecht, J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133–2135 (1993).
[CrossRef]

Hänsch, T. W.

Haritos, K. G.

Hawthorn, C. J.

C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[CrossRef]

Hollberg, L.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Hulet, R. G.

C. C. Bradley, J. Chen, R. G. Hulet, “Instrumentation for the stable operation of laser diodes,” Rev. Sci. Instrum. 61, 2097–2101 (1990).
[CrossRef]

Kasevich, M. A.

King, T. A.

Ko, D. K.

Libbrecht, K. G.

K. G. Libbrecht, J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133–2135 (1993).
[CrossRef]

Littman, M. G.

Liu, K.

McNicholl, P.

Metcalf, H. J.

Oppenheim, U. P.

I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

Schawlow, A. L.

Scholten, R. E.

C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[CrossRef]

Shoshan, I.

I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

Tokaryk, D. W.

Weber, K. P.

C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[CrossRef]

Wieman, C. E.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Yan, G.-Y.

Zhang, G. Z.

Appl. Opt. (4)

J. Appl. Phys. (1)

I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (2)

Rev. Sci. Instrum. (4)

C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[CrossRef]

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

K. G. Libbrecht, J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133–2135 (1993).
[CrossRef]

C. C. Bradley, J. Chen, R. G. Hulet, “Instrumentation for the stable operation of laser diodes,” Rev. Sci. Instrum. 61, 2097–2101 (1990).
[CrossRef]

Other (2)

Sacher Lasertechnik, “Technical Note—No. 13, Littrow vs. Littman Laser, a comparison,” retrieved 11March2004, http://data.sacher-laser.com/techdocs/comparison.pdf .

CircuLaser diodes have a cylindrical lens mounted in the 9-mm package to produce a beam with symmetric divergence.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of the grating stabilization scheme. The laser is first collimated, and then the polarization is rotated with a λ/2 plate such that all the light passes through the Faraday-effect isolator. On exiting the isolator, the light strikes a diffraction grating. The zeroth-order specular reflection is used as the output coupler for the laser. The first-order diffracted light passes through a λ/2 plate that rotates the polarization by 90 deg and is then reflected by a mirror into one of the rejection ports of the isolator. The frequency of light that is coupled back into the laser is determined by the angle of the grating and the position of the mirror.

Fig. 2
Fig. 2

Tuning the laser. (a) The four parameters L 1, L 2, θ, and α, which, along with the nominal laser wavelength and the grating line spacing, define the cavity. The angle γ is determined from Eq. (3). (b) Shortening the cavity at higher γ can be done by letting the beam return to the laser diode at a small angle δ relative to the outgoing beam.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ΔSS0=Δλλ0,
S=mλ.
γ=α-arcsinλ/d-sinα.
Δf=Qδ.
Q=cL1A+L2Bλ0S0+L2λ0C/d.
A1+cos ψ0sin ψ0,
Bsin γ01-cos ψ0,
Csin 2θcosα-γ01-cos ψ0,
S0=2L1+1+sin 2θ+sin γ0sin ψ0L2.
G=Qλ02cd cosα-γ0.
P=2 sinθ+γ0/2L1D+L2E1+Gsin2 ψ0,
Dsin ψ0sin2θ+γ0cos 2θ+cos γ0,
Ecos 2θ+cos γ0sin2θ+γ0sin γ0-G sin 2θ.

Metrics