Abstract

A new analytical model, derived rigorously from scalar diffraction theory, accurately fits soft-x-ray measurements of symmetrical profile gold transmission gratings in all diffracted orders. The calibration system selects numerous photon energies by use of a high-resolution grazing-incidence monochromator and a dc e-beam source. Fine-period free-standing gratings exhibit limited performance and require such testing to determine parameters of and select acceptable gratings for use in time-resolved (0.25 ns) spectrographs of known radiometric response. Unfolded spectra yield a Z-pinch plasma peak kT ∼250 eV, total radiated energy ∼900 kJ, and a pinch-driven gold-wall hohlraum Planckian kT ∼86 eV.

© 2004 Optical Society of America

Full Article  |  PDF Article

Corrections

Michael C. Hettrick, Michael E. Cuneo, John L. Porter, Larry E. Ruggles, Walter W. Simpson, Mark F. Vargas, and David F. Wenger, "Profiled bar transmission gratings: soft-x-ray calibration of new Kirchoff solutions—erratum," Appl. Opt. 43, 4785-4785 (2004)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-43-25-4785

References

  • View by:
  • |
  • |
  • |

  1. H. W. Schnopper, L. P. Van Speybroek, J. P. Delvaille, A. Epstein, E. Kallne, R. Z. Bachrach, J. H. Dijkstra, L. Lantward, “Diffraction grating transmission efficiencies for XUV and soft-x-rays,” Appl. Opt. 16, 1088–1091 (1977).
    [PubMed]
  2. K. Eidmann, M. Kuhne, P. Muller, G. D. Tsakiris, “Characterization of pinhole transmission gratings,” J. X-Ray Sci. Technol. 2, 259–273 (1990).
    [CrossRef]
  3. L. E. Ruggles, M. E. Cuneo, J. L. Porter, D. F. Wenger, W. W. Simpson, “Measurement of the efficiency of gold transmission gratings in 100–5000 eV photon energy range,” Rev. Sci. Instrum. 72, 1–5 (2001).
    [CrossRef]
  4. H. Brauninger, P. Predehl, K. P. Beuermann, “Transmission grating efficiencies for wavelengths between 5.4 A and 44.8 A,” Appl. Opt. 18, 368–373 (1979).
    [CrossRef] [PubMed]
  5. K. A. Flanagan, T. H. Markert, J. E. Davis, M. L. Shattenburg, R. L. Blake, F. Scholze, P. Bulicke, R. Fliegauf, S. Kraft, G. Ulm, E. M. Gullikson, “Modeling the Chandra high energy transmission gratings below 2 keV,” Proc. SPIE 414, 559–572 (2000).
    [CrossRef]
  6. Austin Instruments, Inc., 10 Temple Street, Reading, Mass. 01867-2830, www.austinst.com .
  7. Hettrick Scientific, 1-39-59 Tama-cho, Fuchu-shi Tokyo 183-0002 Japan, hettrickscientific@yahoo.com, mhettrick@hotmail.com.
  8. M. C. Hettrick, “Surface normal rotation: a new technique for grazing-incidence monochromators,” Appl. Opt. 31, 7174–7178 (1992).
    [CrossRef] [PubMed]
  9. M. C. Hettrick, “Grating monochromators and spectrometers based on surface normal rotation,” U.S. patent5,274,435 (28December1993).
  10. M. C. Hettrick, “Optical design and experimental development of grazing incidence fixed slit spectrometers for high resolution plasma diagnostics,” Ph.D. dissertation (The Graduate University for Advanced Studies, Nagoya University, Japan, 1996).
  11. LeBow Co., 5960 Mandarin Avenue, Goleta, Calif. 93117, www.lebowcompany.com .
  12. Roper Scientific, 3660 Quakerbridge Road, Trenton, N.J. 08619, www.roperscientific.com .
  13. M. L. Shattenburg, E. H. Anderson, H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr. 41, 13–20 (1990).
    [CrossRef]
  14. Heidenhain GmbH, Traunreut Germany.
  15. B. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo-absorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1 (1982); on-line version at www-cxro.lbl.gov/optical_constants/ .
    [CrossRef]
  16. E. E. Scime, E. H. Anderson, D. J. McComas, M. L. Schattenburg, “Extreme-ultraviolet polarization and filtering with gold transmission gratings,” Appl. Opt. 34, 648–654 (1995).
    [CrossRef] [PubMed]
  17. S. Sailaja, P. A. Naik, V. Arora, P. D. Gupta, “Occurrence of half-integral diffraction orders in XUV-soft x-ray spectra using a free-standing transmission grating,” J. X-Ray Sci. Technol. 8, 231–239 (2000).
  18. M. K. Matzen, “Z-pinches as intense x-ray sources for high-energy density physics applications,” Phys. Plasmas 4, 1519–1527 (1997).
    [CrossRef]
  19. M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
    [CrossRef]
  20. M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
    [CrossRef]
  21. International Radiation Detectors Inc., 2527 West 237th Street, Unit C, Torrance Calif. 90505-5243, www.ird-inc.com .
  22. J. F. Seely, C. N. Boyer, G. E. Holland, J. L. Weaver, “X-ray absolute calibration of the time response of a silicon photodiode,” Appl. Opt. 41, 5209–5217 (2002).
    [CrossRef] [PubMed]
  23. J. L. Weaver, G. Holland, U. Feldman, J. F. Seely, C. M. Brown, V. Serlin, A. V. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the Nike laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
    [CrossRef]
  24. K. C. Gendreau, M. D. Audley, K. A. Arnaud, K. R. Boyce, R. Fujimoto, Y. Ishisaki, R. L. Kelley, T. Mihara, K. Mitsuda, F. S. Porter, C. K. Stahle, A. E. Szymkowiak, “ASTRO-E/XRS calibration program and results,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 137–147 (1999).
    [CrossRef]

2002 (2)

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
[CrossRef]

J. F. Seely, C. N. Boyer, G. E. Holland, J. L. Weaver, “X-ray absolute calibration of the time response of a silicon photodiode,” Appl. Opt. 41, 5209–5217 (2002).
[CrossRef] [PubMed]

2001 (3)

J. L. Weaver, G. Holland, U. Feldman, J. F. Seely, C. M. Brown, V. Serlin, A. V. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the Nike laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

L. E. Ruggles, M. E. Cuneo, J. L. Porter, D. F. Wenger, W. W. Simpson, “Measurement of the efficiency of gold transmission gratings in 100–5000 eV photon energy range,” Rev. Sci. Instrum. 72, 1–5 (2001).
[CrossRef]

2000 (2)

K. A. Flanagan, T. H. Markert, J. E. Davis, M. L. Shattenburg, R. L. Blake, F. Scholze, P. Bulicke, R. Fliegauf, S. Kraft, G. Ulm, E. M. Gullikson, “Modeling the Chandra high energy transmission gratings below 2 keV,” Proc. SPIE 414, 559–572 (2000).
[CrossRef]

S. Sailaja, P. A. Naik, V. Arora, P. D. Gupta, “Occurrence of half-integral diffraction orders in XUV-soft x-ray spectra using a free-standing transmission grating,” J. X-Ray Sci. Technol. 8, 231–239 (2000).

1997 (1)

M. K. Matzen, “Z-pinches as intense x-ray sources for high-energy density physics applications,” Phys. Plasmas 4, 1519–1527 (1997).
[CrossRef]

1995 (1)

1992 (1)

1990 (2)

K. Eidmann, M. Kuhne, P. Muller, G. D. Tsakiris, “Characterization of pinhole transmission gratings,” J. X-Ray Sci. Technol. 2, 259–273 (1990).
[CrossRef]

M. L. Shattenburg, E. H. Anderson, H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr. 41, 13–20 (1990).
[CrossRef]

1982 (1)

B. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo-absorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1 (1982); on-line version at www-cxro.lbl.gov/optical_constants/ .
[CrossRef]

1979 (1)

1977 (1)

Anderson, E. H.

E. E. Scime, E. H. Anderson, D. J. McComas, M. L. Schattenburg, “Extreme-ultraviolet polarization and filtering with gold transmission gratings,” Appl. Opt. 34, 648–654 (1995).
[CrossRef] [PubMed]

M. L. Shattenburg, E. H. Anderson, H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr. 41, 13–20 (1990).
[CrossRef]

Arnaud, K. A.

K. C. Gendreau, M. D. Audley, K. A. Arnaud, K. R. Boyce, R. Fujimoto, Y. Ishisaki, R. L. Kelley, T. Mihara, K. Mitsuda, F. S. Porter, C. K. Stahle, A. E. Szymkowiak, “ASTRO-E/XRS calibration program and results,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 137–147 (1999).
[CrossRef]

Arora, V.

S. Sailaja, P. A. Naik, V. Arora, P. D. Gupta, “Occurrence of half-integral diffraction orders in XUV-soft x-ray spectra using a free-standing transmission grating,” J. X-Ray Sci. Technol. 8, 231–239 (2000).

Audley, M. D.

K. C. Gendreau, M. D. Audley, K. A. Arnaud, K. R. Boyce, R. Fujimoto, Y. Ishisaki, R. L. Kelley, T. Mihara, K. Mitsuda, F. S. Porter, C. K. Stahle, A. E. Szymkowiak, “ASTRO-E/XRS calibration program and results,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 137–147 (1999).
[CrossRef]

Bachrach, R. Z.

Bennett, G. R.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
[CrossRef]

Beuermann, K. P.

Blake, R. L.

K. A. Flanagan, T. H. Markert, J. E. Davis, M. L. Shattenburg, R. L. Blake, F. Scholze, P. Bulicke, R. Fliegauf, S. Kraft, G. Ulm, E. M. Gullikson, “Modeling the Chandra high energy transmission gratings below 2 keV,” Proc. SPIE 414, 559–572 (2000).
[CrossRef]

Boyce, K. R.

K. C. Gendreau, M. D. Audley, K. A. Arnaud, K. R. Boyce, R. Fujimoto, Y. Ishisaki, R. L. Kelley, T. Mihara, K. Mitsuda, F. S. Porter, C. K. Stahle, A. E. Szymkowiak, “ASTRO-E/XRS calibration program and results,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 137–147 (1999).
[CrossRef]

Boyer, C. N.

Brauninger, H.

Brown, C. M.

J. L. Weaver, G. Holland, U. Feldman, J. F. Seely, C. M. Brown, V. Serlin, A. V. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the Nike laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Bulicke, P.

K. A. Flanagan, T. H. Markert, J. E. Davis, M. L. Shattenburg, R. L. Blake, F. Scholze, P. Bulicke, R. Fliegauf, S. Kraft, G. Ulm, E. M. Gullikson, “Modeling the Chandra high energy transmission gratings below 2 keV,” Proc. SPIE 414, 559–572 (2000).
[CrossRef]

Chandler, G. A.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

Cuneo, M. E.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
[CrossRef]

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

L. E. Ruggles, M. E. Cuneo, J. L. Porter, D. F. Wenger, W. W. Simpson, “Measurement of the efficiency of gold transmission gratings in 100–5000 eV photon energy range,” Rev. Sci. Instrum. 72, 1–5 (2001).
[CrossRef]

Davis, J. E.

K. A. Flanagan, T. H. Markert, J. E. Davis, M. L. Shattenburg, R. L. Blake, F. Scholze, P. Bulicke, R. Fliegauf, S. Kraft, G. Ulm, E. M. Gullikson, “Modeling the Chandra high energy transmission gratings below 2 keV,” Proc. SPIE 414, 559–572 (2000).
[CrossRef]

Delvaille, J. P.

Deniz, A. V.

J. L. Weaver, G. Holland, U. Feldman, J. F. Seely, C. M. Brown, V. Serlin, A. V. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the Nike laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Dijkstra, J. H.

Eidmann, K.

K. Eidmann, M. Kuhne, P. Muller, G. D. Tsakiris, “Characterization of pinhole transmission gratings,” J. X-Ray Sci. Technol. 2, 259–273 (1990).
[CrossRef]

Epstein, A.

Fehl, D. L.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

Feldman, U.

J. L. Weaver, G. Holland, U. Feldman, J. F. Seely, C. M. Brown, V. Serlin, A. V. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the Nike laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Flanagan, K. A.

K. A. Flanagan, T. H. Markert, J. E. Davis, M. L. Shattenburg, R. L. Blake, F. Scholze, P. Bulicke, R. Fliegauf, S. Kraft, G. Ulm, E. M. Gullikson, “Modeling the Chandra high energy transmission gratings below 2 keV,” Proc. SPIE 414, 559–572 (2000).
[CrossRef]

Fliegauf, R.

K. A. Flanagan, T. H. Markert, J. E. Davis, M. L. Shattenburg, R. L. Blake, F. Scholze, P. Bulicke, R. Fliegauf, S. Kraft, G. Ulm, E. M. Gullikson, “Modeling the Chandra high energy transmission gratings below 2 keV,” Proc. SPIE 414, 559–572 (2000).
[CrossRef]

Fujikawa, B. K.

B. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo-absorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1 (1982); on-line version at www-cxro.lbl.gov/optical_constants/ .
[CrossRef]

Fujimoto, R.

K. C. Gendreau, M. D. Audley, K. A. Arnaud, K. R. Boyce, R. Fujimoto, Y. Ishisaki, R. L. Kelley, T. Mihara, K. Mitsuda, F. S. Porter, C. K. Stahle, A. E. Szymkowiak, “ASTRO-E/XRS calibration program and results,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 137–147 (1999).
[CrossRef]

Gendreau, K. C.

K. C. Gendreau, M. D. Audley, K. A. Arnaud, K. R. Boyce, R. Fujimoto, Y. Ishisaki, R. L. Kelley, T. Mihara, K. Mitsuda, F. S. Porter, C. K. Stahle, A. E. Szymkowiak, “ASTRO-E/XRS calibration program and results,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 137–147 (1999).
[CrossRef]

Gilliland, T. L.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

Green, R. M.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
[CrossRef]

Gullikson, E. M.

K. A. Flanagan, T. H. Markert, J. E. Davis, M. L. Shattenburg, R. L. Blake, F. Scholze, P. Bulicke, R. Fliegauf, S. Kraft, G. Ulm, E. M. Gullikson, “Modeling the Chandra high energy transmission gratings below 2 keV,” Proc. SPIE 414, 559–572 (2000).
[CrossRef]

Gupta, P. D.

S. Sailaja, P. A. Naik, V. Arora, P. D. Gupta, “Occurrence of half-integral diffraction orders in XUV-soft x-ray spectra using a free-standing transmission grating,” J. X-Ray Sci. Technol. 8, 231–239 (2000).

Hammer, J. H.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
[CrossRef]

Hanson, D. L.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
[CrossRef]

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

Henke, B.

B. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo-absorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1 (1982); on-line version at www-cxro.lbl.gov/optical_constants/ .
[CrossRef]

Hettrick, M. C.

M. C. Hettrick, “Surface normal rotation: a new technique for grazing-incidence monochromators,” Appl. Opt. 31, 7174–7178 (1992).
[CrossRef] [PubMed]

M. C. Hettrick, “Grating monochromators and spectrometers based on surface normal rotation,” U.S. patent5,274,435 (28December1993).

M. C. Hettrick, “Optical design and experimental development of grazing incidence fixed slit spectrometers for high resolution plasma diagnostics,” Ph.D. dissertation (The Graduate University for Advanced Studies, Nagoya University, Japan, 1996).

Holland, G.

J. L. Weaver, G. Holland, U. Feldman, J. F. Seely, C. M. Brown, V. Serlin, A. V. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the Nike laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Holland, G. E.

Idzorek, G. C.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
[CrossRef]

Ishisaki, Y.

K. C. Gendreau, M. D. Audley, K. A. Arnaud, K. R. Boyce, R. Fujimoto, Y. Ishisaki, R. L. Kelley, T. Mihara, K. Mitsuda, F. S. Porter, C. K. Stahle, A. E. Szymkowiak, “ASTRO-E/XRS calibration program and results,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 137–147 (1999).
[CrossRef]

Kallne, E.

Kelley, R. L.

K. C. Gendreau, M. D. Audley, K. A. Arnaud, K. R. Boyce, R. Fujimoto, Y. Ishisaki, R. L. Kelley, T. Mihara, K. Mitsuda, F. S. Porter, C. K. Stahle, A. E. Szymkowiak, “ASTRO-E/XRS calibration program and results,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 137–147 (1999).
[CrossRef]

Klapisch, M.

J. L. Weaver, G. Holland, U. Feldman, J. F. Seely, C. M. Brown, V. Serlin, A. V. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the Nike laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Kraft, S.

K. A. Flanagan, T. H. Markert, J. E. Davis, M. L. Shattenburg, R. L. Blake, F. Scholze, P. Bulicke, R. Fliegauf, S. Kraft, G. Ulm, E. M. Gullikson, “Modeling the Chandra high energy transmission gratings below 2 keV,” Proc. SPIE 414, 559–572 (2000).
[CrossRef]

Kuhne, M.

K. Eidmann, M. Kuhne, P. Muller, G. D. Tsakiris, “Characterization of pinhole transmission gratings,” J. X-Ray Sci. Technol. 2, 259–273 (1990).
[CrossRef]

Lantward, L.

Lee, P.

B. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo-absorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1 (1982); on-line version at www-cxro.lbl.gov/optical_constants/ .
[CrossRef]

Markert, T. H.

K. A. Flanagan, T. H. Markert, J. E. Davis, M. L. Shattenburg, R. L. Blake, F. Scholze, P. Bulicke, R. Fliegauf, S. Kraft, G. Ulm, E. M. Gullikson, “Modeling the Chandra high energy transmission gratings below 2 keV,” Proc. SPIE 414, 559–572 (2000).
[CrossRef]

Matzen, M. K.

M. K. Matzen, “Z-pinches as intense x-ray sources for high-energy density physics applications,” Phys. Plasmas 4, 1519–1527 (1997).
[CrossRef]

McComas, D. J.

McGurn, J. S.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
[CrossRef]

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

Mihara, T.

K. C. Gendreau, M. D. Audley, K. A. Arnaud, K. R. Boyce, R. Fujimoto, Y. Ishisaki, R. L. Kelley, T. Mihara, K. Mitsuda, F. S. Porter, C. K. Stahle, A. E. Szymkowiak, “ASTRO-E/XRS calibration program and results,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 137–147 (1999).
[CrossRef]

Mitsuda, K.

K. C. Gendreau, M. D. Audley, K. A. Arnaud, K. R. Boyce, R. Fujimoto, Y. Ishisaki, R. L. Kelley, T. Mihara, K. Mitsuda, F. S. Porter, C. K. Stahle, A. E. Szymkowiak, “ASTRO-E/XRS calibration program and results,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 137–147 (1999).
[CrossRef]

Muller, P.

K. Eidmann, M. Kuhne, P. Muller, G. D. Tsakiris, “Characterization of pinhole transmission gratings,” J. X-Ray Sci. Technol. 2, 259–273 (1990).
[CrossRef]

Naik, P. A.

S. Sailaja, P. A. Naik, V. Arora, P. D. Gupta, “Occurrence of half-integral diffraction orders in XUV-soft x-ray spectra using a free-standing transmission grating,” J. X-Ray Sci. Technol. 8, 231–239 (2000).

Porter, F. S.

K. C. Gendreau, M. D. Audley, K. A. Arnaud, K. R. Boyce, R. Fujimoto, Y. Ishisaki, R. L. Kelley, T. Mihara, K. Mitsuda, F. S. Porter, C. K. Stahle, A. E. Szymkowiak, “ASTRO-E/XRS calibration program and results,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 137–147 (1999).
[CrossRef]

Porter, J. L.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
[CrossRef]

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

L. E. Ruggles, M. E. Cuneo, J. L. Porter, D. F. Wenger, W. W. Simpson, “Measurement of the efficiency of gold transmission gratings in 100–5000 eV photon energy range,” Rev. Sci. Instrum. 72, 1–5 (2001).
[CrossRef]

Predehl, P.

Reynolds, P. G.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

Ruggles, L. E.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
[CrossRef]

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

L. E. Ruggles, M. E. Cuneo, J. L. Porter, D. F. Wenger, W. W. Simpson, “Measurement of the efficiency of gold transmission gratings in 100–5000 eV photon energy range,” Rev. Sci. Instrum. 72, 1–5 (2001).
[CrossRef]

Sailaja, S.

S. Sailaja, P. A. Naik, V. Arora, P. D. Gupta, “Occurrence of half-integral diffraction orders in XUV-soft x-ray spectra using a free-standing transmission grating,” J. X-Ray Sci. Technol. 8, 231–239 (2000).

Schattenburg, M. L.

Schnopper, H. W.

Scholze, F.

K. A. Flanagan, T. H. Markert, J. E. Davis, M. L. Shattenburg, R. L. Blake, F. Scholze, P. Bulicke, R. Fliegauf, S. Kraft, G. Ulm, E. M. Gullikson, “Modeling the Chandra high energy transmission gratings below 2 keV,” Proc. SPIE 414, 559–572 (2000).
[CrossRef]

Scime, E. E.

Seamen, H.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

Seamen, J. J.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
[CrossRef]

Seely, J. F.

J. F. Seely, C. N. Boyer, G. E. Holland, J. L. Weaver, “X-ray absolute calibration of the time response of a silicon photodiode,” Appl. Opt. 41, 5209–5217 (2002).
[CrossRef] [PubMed]

J. L. Weaver, G. Holland, U. Feldman, J. F. Seely, C. M. Brown, V. Serlin, A. V. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the Nike laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Serlin, V.

J. L. Weaver, G. Holland, U. Feldman, J. F. Seely, C. M. Brown, V. Serlin, A. V. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the Nike laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Shattenburg, M. L.

K. A. Flanagan, T. H. Markert, J. E. Davis, M. L. Shattenburg, R. L. Blake, F. Scholze, P. Bulicke, R. Fliegauf, S. Kraft, G. Ulm, E. M. Gullikson, “Modeling the Chandra high energy transmission gratings below 2 keV,” Proc. SPIE 414, 559–572 (2000).
[CrossRef]

M. L. Shattenburg, E. H. Anderson, H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr. 41, 13–20 (1990).
[CrossRef]

Shimabukuro, R. L.

B. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo-absorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1 (1982); on-line version at www-cxro.lbl.gov/optical_constants/ .
[CrossRef]

Simpson, W. W.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
[CrossRef]

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

L. E. Ruggles, M. E. Cuneo, J. L. Porter, D. F. Wenger, W. W. Simpson, “Measurement of the efficiency of gold transmission gratings in 100–5000 eV photon energy range,” Rev. Sci. Instrum. 72, 1–5 (2001).
[CrossRef]

Smith, H. I.

M. L. Shattenburg, E. H. Anderson, H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr. 41, 13–20 (1990).
[CrossRef]

Spielman, R. B.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

Stahle, C. K.

K. C. Gendreau, M. D. Audley, K. A. Arnaud, K. R. Boyce, R. Fujimoto, Y. Ishisaki, R. L. Kelley, T. Mihara, K. Mitsuda, F. S. Porter, C. K. Stahle, A. E. Szymkowiak, “ASTRO-E/XRS calibration program and results,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 137–147 (1999).
[CrossRef]

Struve, K. W.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

Stygar, W. A.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
[CrossRef]

Styger, W. A.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

Szymkowiak, A. E.

K. C. Gendreau, M. D. Audley, K. A. Arnaud, K. R. Boyce, R. Fujimoto, Y. Ishisaki, R. L. Kelley, T. Mihara, K. Mitsuda, F. S. Porter, C. K. Stahle, A. E. Szymkowiak, “ASTRO-E/XRS calibration program and results,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 137–147 (1999).
[CrossRef]

Tanaka, T. J.

B. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo-absorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1 (1982); on-line version at www-cxro.lbl.gov/optical_constants/ .
[CrossRef]

Torres, J. A.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
[CrossRef]

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

Tsakiris, G. D.

K. Eidmann, M. Kuhne, P. Muller, G. D. Tsakiris, “Characterization of pinhole transmission gratings,” J. X-Ray Sci. Technol. 2, 259–273 (1990).
[CrossRef]

Ulm, G.

K. A. Flanagan, T. H. Markert, J. E. Davis, M. L. Shattenburg, R. L. Blake, F. Scholze, P. Bulicke, R. Fliegauf, S. Kraft, G. Ulm, E. M. Gullikson, “Modeling the Chandra high energy transmission gratings below 2 keV,” Proc. SPIE 414, 559–572 (2000).
[CrossRef]

Van Speybroek, L. P.

Vesey, R. A.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
[CrossRef]

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

Weaver, J. L.

J. F. Seely, C. N. Boyer, G. E. Holland, J. L. Weaver, “X-ray absolute calibration of the time response of a silicon photodiode,” Appl. Opt. 41, 5209–5217 (2002).
[CrossRef] [PubMed]

J. L. Weaver, G. Holland, U. Feldman, J. F. Seely, C. M. Brown, V. Serlin, A. V. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the Nike laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Wenger, D. A.

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

Wenger, D. F.

L. E. Ruggles, M. E. Cuneo, J. L. Porter, D. F. Wenger, W. W. Simpson, “Measurement of the efficiency of gold transmission gratings in 100–5000 eV photon energy range,” Rev. Sci. Instrum. 72, 1–5 (2001).
[CrossRef]

Appl. Opt. (5)

At. Data Nucl. Data Tables (1)

B. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo-absorption, scattering and reflection,” At. Data Nucl. Data Tables 27, 1 (1982); on-line version at www-cxro.lbl.gov/optical_constants/ .
[CrossRef]

J. X-Ray Sci. Technol. (2)

S. Sailaja, P. A. Naik, V. Arora, P. D. Gupta, “Occurrence of half-integral diffraction orders in XUV-soft x-ray spectra using a free-standing transmission grating,” J. X-Ray Sci. Technol. 8, 231–239 (2000).

K. Eidmann, M. Kuhne, P. Muller, G. D. Tsakiris, “Characterization of pinhole transmission gratings,” J. X-Ray Sci. Technol. 2, 259–273 (1990).
[CrossRef]

Phys. Plasmas (2)

M. K. Matzen, “Z-pinches as intense x-ray sources for high-energy density physics applications,” Phys. Plasmas 4, 1519–1527 (1997).
[CrossRef]

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. A. Chandler, D. L. Fehl, T. L. Gilliland, D. L. Hanson, J. S. McGurn, P. G. Reynolds, L. E. Ruggles, H. Seamen, R. B. Spielman, K. W. Struve, W. A. Styger, W. W. Simpson, J. A. Torres, D. A. Wenger, “Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept,” Phys. Plasmas 8, 2257–2267 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

M. E. Cuneo, R. A. Vesey, J. L. Porter, G. R. Bennett, D. L. Hanson, L. E. Ruggles, W. W. Simpson, G. C. Idzorek, W. A. Stygar, J. H. Hammer, J. J. Seamen, J. A. Torres, J. S. McGurn, R. M. Green, “Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions,” Phys. Rev. Lett. 88, 215004, 1–4 (2002).
[CrossRef]

Phys. Scr. (1)

M. L. Shattenburg, E. H. Anderson, H. I. Smith, “X-ray/VUV transmission gratings for astrophysical and laboratory applications,” Phys. Scr. 41, 13–20 (1990).
[CrossRef]

Proc. SPIE (1)

K. A. Flanagan, T. H. Markert, J. E. Davis, M. L. Shattenburg, R. L. Blake, F. Scholze, P. Bulicke, R. Fliegauf, S. Kraft, G. Ulm, E. M. Gullikson, “Modeling the Chandra high energy transmission gratings below 2 keV,” Proc. SPIE 414, 559–572 (2000).
[CrossRef]

Rev. Sci. Instrum. (2)

L. E. Ruggles, M. E. Cuneo, J. L. Porter, D. F. Wenger, W. W. Simpson, “Measurement of the efficiency of gold transmission gratings in 100–5000 eV photon energy range,” Rev. Sci. Instrum. 72, 1–5 (2001).
[CrossRef]

J. L. Weaver, G. Holland, U. Feldman, J. F. Seely, C. M. Brown, V. Serlin, A. V. Deniz, M. Klapisch, “The determination of absolutely calibrated spectra from laser produced plasmas using a transmission grating spectrometer at the Nike laser facility,” Rev. Sci. Instrum. 72, 108–118 (2001).
[CrossRef]

Other (9)

K. C. Gendreau, M. D. Audley, K. A. Arnaud, K. R. Boyce, R. Fujimoto, Y. Ishisaki, R. L. Kelley, T. Mihara, K. Mitsuda, F. S. Porter, C. K. Stahle, A. E. Szymkowiak, “ASTRO-E/XRS calibration program and results,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, O. H. Siegmund, K. A. Flanagan, eds., Proc. SPIE3765, 137–147 (1999).
[CrossRef]

International Radiation Detectors Inc., 2527 West 237th Street, Unit C, Torrance Calif. 90505-5243, www.ird-inc.com .

Austin Instruments, Inc., 10 Temple Street, Reading, Mass. 01867-2830, www.austinst.com .

Hettrick Scientific, 1-39-59 Tama-cho, Fuchu-shi Tokyo 183-0002 Japan, hettrickscientific@yahoo.com, mhettrick@hotmail.com.

M. C. Hettrick, “Grating monochromators and spectrometers based on surface normal rotation,” U.S. patent5,274,435 (28December1993).

M. C. Hettrick, “Optical design and experimental development of grazing incidence fixed slit spectrometers for high resolution plasma diagnostics,” Ph.D. dissertation (The Graduate University for Advanced Studies, Nagoya University, Japan, 1996).

LeBow Co., 5960 Mandarin Avenue, Goleta, Calif. 93117, www.lebowcompany.com .

Roper Scientific, 3660 Quakerbridge Road, Trenton, N.J. 08619, www.roperscientific.com .

Heidenhain GmbH, Traunreut Germany.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (33)

Fig. 1
Fig. 1

Photograph of calibration system based on the moderate-resolution SNR monochromator: 1, Manson source; 2, custom-anode library; 3, aperture selector; 4, grazing-incidence monochromator grating; 5, filter selection; 6, exit slit or transmission grating; 7, in situ microscope; 8, CCD.

Fig. 2
Fig. 2

Photograph of calibration system based on the high-resolution SXR monochromator. 1, Manson source; 3, filter selector; 4, grazing-incidence monochromator; 5, aperture selector. Exit slit or transmission grating, microscope, and CCD are off the photograph but are the same as shown in Fig. 1.

Fig. 3
Fig. 3

Typical anode spectrum (zinc, 10 keV, 200 mA, Mg filter), showing three usable lines and a Bremsstrahlung continuum.

Fig. 4
Fig. 4

Spectrum of monochromatic orders from grating HS14, at three sample photon energies. The CCD intercepts grating orders -1, 0, and +1 at (a) Y-Mζ (133 eV) and orders -5 to +5 at (b) Cr-Lα (573 eV). At (c) Si-Kα (1740 eV), grating orders -10 to +10 are detectable peaks above the scattered wings of the low-order profiles.

Fig. 5
Fig. 5

HS14 efficiency ratio best fit of rectangular bar model (z o = 275 nm, a/ d = 0.430). (a) First-to-zero-order efficiency ratio. (b) Second-to-first-order efficiency ratio.

Fig. 6
Fig. 6

Linear side-wall bar profile model.

Fig. 7
Fig. 7

HS14 efficiency ratio best fit of linear side-wall bar model (z o = 287 nm, a/ d = 0.369, b/ d = 0.114).

Fig. 8
Fig. 8

Step bar thickness profile model.

Fig. 9
Fig. 9

Stepfit test for a trapezoidal bar, demonstrating the correctness of the new Kirchoff solutions derived in this study for both a trapezoidal and a multistep profile bar.

Fig. 10
Fig. 10

SEM of grating HS04 at 1.5-k magnification, showing nickel support structure composed of a triangular coarse pattern and a linear fine pattern. Bending of gold grating bars is also evident to the right of the micrograph.

Fig. 11
Fig. 11

SEM of grating HS04 at 10-k magnification, taken at an elevation of 45°, measuring the projected thickness of the coarse supports and the width of the fine support bars.

Fig. 12
Fig. 12

SEM of grating HS04 at 10-k magnification, taken at an elevation of 45°, measuring the projected thickness of the fine nickel support bars. Extreme bending of the gold grating bars is evident.

Fig. 13
Fig. 13

Image profile in the astigmatism direction (along the length of the grating aperture slit, vertical in Fig. 10) at the CCD, taken at a photon energy of 851.5 eV.

Fig. 14
Fig. 14

SEM at 45° elevation and energy-dispersive spectral results on grating HS04: rectangle contains organic residue on side of gold bar; white cross is on top of gold bar; black cross is on nickel particulate. Listed next to each of three regions sampled by an SEM x-ray spectrometer are approximate percentages by mass of four elements along the spectrometer line-of-sight.

Fig. 15
Fig. 15

SEM of grating HS04 at 50-k magnification, taken after physical sectioning of the gold grating bars. Although the uneven spacing is in part due to the stresses of the sectioning, the globular nickel contamination between the gold bars as well as the high-frequency corrugations on the edges of the bars is representative of the virgin grating.

Fig. 16
Fig. 16

SEM of sectioned gold bars of grating HS04 at 80-k magnification, taken at an elevation of 30°. The quasi-trapezoidal cross section of the bars can be seen, as well as the presence of nickel attached to the bottom edges of the gold bars. The high-frequency ripple in the gold-bar width and thickness is clearly visible.

Fig. 17
Fig. 17

SEM of sectioned gold bars of grating HS04 at 150-k magnification, viewed on-edge. The average measured thickness of ∼210 nm is in excellent agreement with the thickness parameter of 206 nm inferred by the soft-x-ray efficiency data obtained with the Stepfit code.

Fig. 18
Fig. 18

HS04 order spectra at (a) Y-Mζ (133 eV), (b) Cr-Lα (573 eV), and (c) Si-Kα (1740 eV), showing high background and anomalous peaks between the spectral orders (e.g., between the fourth and the fifth orders for Si-Kα and midway between the orders for Cr-Lα). Compare with the cleaner spectra of Fig. 4 for HS14.

Fig. 19
Fig. 19

Step fit for grating HS04, resulting in a net error of 3.3% times m = 1 efficiencies. Gold bar depth profile shown in bottom part of figure.

Fig. 20
Fig. 20

Step fit for grating HS14, resulting in a net error of 2.5% times m = 1 efficiencies. Gold bar depth profile shown in bottom part of figure.

Fig. 21
Fig. 21

Step fit for grating X21, resulting in a net error of 5.0% times m = 1 efficiencies. Gold bar depth profile shown in bottom part of figure.

Fig. 22
Fig. 22

Step fit for grating X27, resulting in a net error of 5.5% times m = 1 efficiencies. Gold bar depth profile shown in bottom part of figure.

Fig. 23
Fig. 23

Step fit for grating HD6, resulting in a net error of 7.2% times m = 1 efficiencies. Gold bar depth profile shown in bottom part of figure.

Fig. 24
Fig. 24

Step fit for grating HS18. Model is fit to the three lowest photon energies (108.5, 277, and 1254 eV) shown by asterisks and compared with measurements (circles) made at high photon energies (1487, 1740, 1923, 2042, 2166, 2293, 2559, 2697, 2839, 2984, 3444, 4511, 4952, and 5415 eV) with a low-resolution transmission grating monochromator.

Fig. 25
Fig. 25

SEM of last generation (XS01) grating, having fewer particulate contaminants, after feedback from this study. Significant aperiodicity is evident in the highlighted rectangle as a variable bar-to-gap ratio due to bent bars.

Fig. 26
Fig. 26

Step fit for XS01, showing a thin bar and the resulting low efficiency at high photon energies. Net error is 4.7% times m = 1 efficiencies. Gold bar depth profile shown in bottom part of figure.

Fig. 27
Fig. 27

Step fit for grating FS194 calibrated after use on Z. Net error is 12.1% times m = 1 efficiencies. FS194 shows a thick gold bar, resulting in excellent high energy efficiency but severe organic contamination due to black wax processing residue. Gold bar depth profile shown in bottom part of figure.

Fig. 28
Fig. 28

Step fit for grating HS14 calibrated after use on Z, showing a slightly widened bar resulting in ∼30% higher second-order efficiencies than the pre-Z results (Fig. 20). Net error is 3.8% times m = 1 efficiencies. Gold bar depth profile shown in bottom part of figure.

Fig. 29
Fig. 29

Pre- and post-Z profile comparison for HS14. The post-Z bars (dotted curve) are wider by ∼10 nm than the virgin bars (solid curve). It is unknown if this effective bar broadening is due to the environmental effect of the pulsed Z source and whether the gold bar actually deformed or was contaminated by the accumulation of metal debris.

Fig. 30
Fig. 30

Unfolded (gigawatt per electron volt per steradian) spectra of a Z-pinch source from experiment Z987, with grating HS14_Z on TGS5, viewing 0.40 height of the pinch at an angle of 13.5°. Data error bars are ±20%. To obtain power observable at a viewing angle of 0°, multiply the vertical scale by a factor of 1/cos(13.5°) = 1.03, since the high mass tungsten Z-pinch source is assumed to be Lambertian (optically thick). For the power spectrum observable from the full height of the pinch, divide the vertical scale by f ∼ 0.40.

Fig. 31
Fig. 31

Temporal history of the viewed pinch on experiment Z987. Multiply vertical scale of the power history by a factor of 1/cos(13.5°) for a Lambertian emitter and by 4/π for an isotropic emitter. Energy radiated from viewed height of the pinch is thus 366 kJ for a Lambertian emitter. For the full pinch, divide this radiated energy and the vertical scale of the power history by f ∼0.40. The horizontal time scale is relative.

Fig. 32
Fig. 32

Unfolded power spectrum of a gold-wall hohlraum driven by a Z pinch on experiment Z998, with grating X27 on TGS17, viewing the wall at an azimuthal angle of 29° and a polar angle of 12°. Data error bars are ±20%. Multiply vertical scale by 1/cos(29°)/cos(12°) = 1.17, since the hohlraum wall is Lambertian (optically thick).

Fig. 33
Fig. 33

Temporal history of the hohlraum from experiment Z998. Multiply vertical scale of the power history by a factor of (1/π)/cos(29°)/cos(12°) ∼0.37 for a Lambertian emitter and by 2/π for an isotropic emitter. Energy radiated from the viewed area of the Lambertian hohlraum wall is thus ∼4 kJ. The horizontal time scale is relative.

Tables (4)

Tables Icon

Table 1 Electron Impact Source Anode Lines

Tables Icon

Table 2 Parameters of Free-Standing Gratings

Tables Icon

Table 3 Calibration Uncertainties

Tables Icon

Table 4 Summary of Critical Performance Indices

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

ηm=sinmπa/d/mπ21+c12-2c1c2
η0=a/d2+1-a/d2c12+2a/d1-a/dc1c2,
c1=exp-2πβzo/λ,
c2=cos2πδzo/λ,
ηp/η1=1/psinpπa/d/sinπa/d2.
ηm=SR/SG×GRATm_ON-GRATm_OFF-GRATm_BASE/SLIT_ON-SLIT_OFF,
ηm=Arm+Brm+Crm+Drm2+Aim+Bim+Cim+Dim2,
2πmArm=-sin ϕa,
2πmAim=cos ϕa-1,
2πmBrm=c1c2 sin ϕa-c5cos ϕa-1cos ϕb+c1c5 sin ϕa+c2cos ϕa+1sin ϕb,
2πmBim=-c1c5 sin ϕa+c2cos ϕa-1cos ϕb+c1c2 sin ϕa-c5cos ϕa+1sin ϕb,
2πm-c42+c32Crm=c1c2 cos ϕb-1+c1c5 sin ϕbc3 cos ϕa-m-c4sin ϕa-c1c2 sin ϕb-c1c5 cos ϕbc3 sin ϕa+m-c4cos ϕa,
2πm-c42+c32Cim=c1c2 cos ϕb-1+c1c5 sin ϕbc3 sin ϕa+m-c4cos ϕa+c1c2 sin ϕb-c1c5 cos ϕbc3 cos ϕa-m-c4sin ϕa,
2πm+c42+c32Drm=-c31-c1c2 cos ϕb+c1c5 sin ϕb-c1m+c4c2 sin ϕb+c5 cos ϕb,
2πm+c42+c32Dim=m+c41-c1c2 cos ϕb+c1c5 sin ϕb-c1c3c2 sin ϕb+c5 cos ϕb,
Ar0=a/d,
Ai0=0,
Br0=c1c21-a/d-2b/d,
Bi0=-c1c51-a/d-2b/d,
Cr0=Dr0=c1c5c4+c1c2-1c3/2π/c32+c42,
Ci0=Di0=c1c5c3+c1c2-1c4/2π/c32+c42,
c3=βz0/λ/b/d,
c4=δz0/λ/b/d,
c5=sin2πδzo/λ.
α=2πmΔa/d
Sα=2πmb/d=ϕb,
2πmArm+Brm=cos ϕa-1-c1c5 sin ϕa+c2cos ϕa-1cos ϕb+c1c2 sin ϕa-c5cos ϕa+1sin ϕb,
2πmAim+Bim=sin ϕa-c1c2 sin ϕa-c5cos ϕa-1cos ϕb-c1c5 sin ϕa+c2cos ϕa+1sin ϕb,
2πmCrm+Drm=j=1S Ermexp-2πβzj/λ,
2πmCim+Dim=j=1S Eimexp-2πβzj/λ,
Erm=1-cos ϕacos2πδzj/λ-sin ϕa sin2πδzj/λcosj-1α1-cos α+sinj-1α sin α+sin ϕa cos2πδzj/λ-1+cos ϕasin2πδzj/λsinj-1α1-cos α-cosj-1α sin α,
Eim=-1-cos ϕasin2πδzj/λ+sin ϕa cos2πδzj/λcosj-1α1-cos α+sinj-1α sin α-sin ϕa sin2πδzj/λ+1+cos ϕacos2πδzj/λsinj-1α1-cos α-cosj-1α sin α,
Ar0+Br0=a/d+1-a/d-2b/dc1c2,
Ai0+Bi0=1-a/d-2b/dc1c5,
Cr0+Dr0=2b/dj=1Scos2πδzj/λ×exp-2πβzj/λ,
Ci0+Di0=2b/dj=1Ssin2πδzj/λ×exp-2πβzj/λ.
T=OAR+1-OARexp-4πβτ/λ,
SjE=Φj/Φoexp-4πβSiO2τSiO2/λ1-exp-4πβSiτSi/λ/W,
P=ΩeffAreaσ/πT4,
Ωeff=π2/cos ρ, if the spectrometer views a cylindrical source,
Ωeff=π/cos ρ/cos θ, if the spectrometer views a plane source,
Ωeff=4π, if the spectrometer views a cylindrical source,
Ωeff=2π, if the spectrometer views a plane source.

Metrics