Abstract

A Sellmeier dispersion of zinc germanium diphosphide (ZnGeP2) crystal has been formulated to determine the phase-matching characteristics of the crystal for the generation of coherent tunable terahertz radiation by difference-frequency mixing techniques. The results computed with the formulated Sellmeier dispersion provide an excellent fit to the experimental data.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [CrossRef]
  2. A. Bonavalet, M. Joffre, J.-L. Martin, A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
    [CrossRef]
  3. A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
    [CrossRef]
  4. M. S. Tani, M. Herrmann, K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13, 1739–1745 (2002).
    [CrossRef]
  5. K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, W. Ruderman, “ZnGeP2 optical parametric oscillator with 3.8–12.4 μm,” Opt. Lett. 25, 841–843 (2000).
    [CrossRef]
  6. G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
    [CrossRef]
  7. G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
    [CrossRef]
  8. V. V. Apollonov, A. I. Gribenyukov, V. V. Korotkova, A. G. Suzdal’tsev, Yu. A. Shakir, “Subtraction of the CO2 laser radiation frequencies in a ZnGeP2 crystal,” Sov. J. Quantum Electron. 26, 469–470 (1996).
    [CrossRef]
  9. W. Shi, Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83, 848–850 (2003).
    [CrossRef]
  10. G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
    [CrossRef]
  11. G. C. Bhar, “Refractive index interpolation in phase-matching,” Appl. Opt. 15, 305–307 (1976).
    [CrossRef]
  12. The extraordinary index ne(λ) = no(λ) + Δn; Δn = 0.0397, which is the long-infrared birefringence, taken from Ref. 6.

2003 (1)

W. Shi, Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83, 848–850 (2003).
[CrossRef]

2002 (2)

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

M. S. Tani, M. Herrmann, K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13, 1739–1745 (2002).
[CrossRef]

2000 (1)

1996 (2)

V. V. Apollonov, A. I. Gribenyukov, V. V. Korotkova, A. G. Suzdal’tsev, Yu. A. Shakir, “Subtraction of the CO2 laser radiation frequencies in a ZnGeP2 crystal,” Sov. J. Quantum Electron. 26, 469–470 (1996).
[CrossRef]

A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

1995 (1)

A. Bonavalet, M. Joffre, J.-L. Martin, A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

1987 (1)

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

1976 (1)

1972 (1)

G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

1971 (1)

G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Apollonov, V. V.

V. V. Apollonov, A. I. Gribenyukov, V. V. Korotkova, A. G. Suzdal’tsev, Yu. A. Shakir, “Subtraction of the CO2 laser radiation frequencies in a ZnGeP2 crystal,” Sov. J. Quantum Electron. 26, 469–470 (1996).
[CrossRef]

Bhar, G. C.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

G. C. Bhar, “Refractive index interpolation in phase-matching,” Appl. Opt. 15, 305–307 (1976).
[CrossRef]

Bonavalet, A.

A. Bonavalet, M. Joffre, J.-L. Martin, A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Boyd, G. D.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Bridges, T. J.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

Buehler, E.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Das, S.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

Ding, Y. J.

W. Shi, Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83, 848–850 (2003).
[CrossRef]

Ferguson, B.

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Ganikhanov, F.

Ghosh, D. K.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

Gribenyukov, A. I.

V. V. Apollonov, A. I. Gribenyukov, V. V. Korotkova, A. G. Suzdal’tsev, Yu. A. Shakir, “Subtraction of the CO2 laser radiation frequencies in a ZnGeP2 crystal,” Sov. J. Quantum Electron. 26, 469–470 (1996).
[CrossRef]

Heinz, T. F.

A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Herrmann, M.

M. S. Tani, M. Herrmann, K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13, 1739–1745 (2002).
[CrossRef]

Joffre, M.

A. Bonavalet, M. Joffre, J.-L. Martin, A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Korotkova, V. V.

V. V. Apollonov, A. I. Gribenyukov, V. V. Korotkova, A. G. Suzdal’tsev, Yu. A. Shakir, “Subtraction of the CO2 laser radiation frequencies in a ZnGeP2 crystal,” Sov. J. Quantum Electron. 26, 469–470 (1996).
[CrossRef]

Maffetone, J. P.

Martin, J.-L.

A. Bonavalet, M. Joffre, J.-L. Martin, A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Migus, A.

A. Bonavalet, M. Joffre, J.-L. Martin, A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

Nahata, A.

A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Patel, C. K. N.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

Ruderman, W.

Sakai, K.

M. S. Tani, M. Herrmann, K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13, 1739–1745 (2002).
[CrossRef]

Samanta, L. K.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

Shakir, Yu. A.

V. V. Apollonov, A. I. Gribenyukov, V. V. Korotkova, A. G. Suzdal’tsev, Yu. A. Shakir, “Subtraction of the CO2 laser radiation frequencies in a ZnGeP2 crystal,” Sov. J. Quantum Electron. 26, 469–470 (1996).
[CrossRef]

Shi, W.

W. Shi, Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83, 848–850 (2003).
[CrossRef]

Storz, F. G.

G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Suzdal’tsev, A. G.

V. V. Apollonov, A. I. Gribenyukov, V. V. Korotkova, A. G. Suzdal’tsev, Yu. A. Shakir, “Subtraction of the CO2 laser radiation frequencies in a ZnGeP2 crystal,” Sov. J. Quantum Electron. 26, 469–470 (1996).
[CrossRef]

Tani, M. S.

M. S. Tani, M. Herrmann, K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13, 1739–1745 (2002).
[CrossRef]

Vodopyanov, K. L.

Weling, A. S.

A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Zhang, X.-C.

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Zwieback, I.

Appl. Opt. (1)

Appl. Phys. Lett. (5)

A. Bonavalet, M. Joffre, J.-L. Martin, A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995).
[CrossRef]

A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

W. Shi, Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83, 848–850 (2003).
[CrossRef]

Meas. Sci. Technol. (1)

M. S. Tani, M. Herrmann, K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13, 1739–1745 (2002).
[CrossRef]

Nat. Mater. (1)

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Opt. Lett. (1)

Sov. J. Quantum Electron. (2)

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

V. V. Apollonov, A. I. Gribenyukov, V. V. Korotkova, A. G. Suzdal’tsev, Yu. A. Shakir, “Subtraction of the CO2 laser radiation frequencies in a ZnGeP2 crystal,” Sov. J. Quantum Electron. 26, 469–470 (1996).
[CrossRef]

Other (1)

The extraordinary index ne(λ) = no(λ) + Δn; Δn = 0.0397, which is the long-infrared birefringence, taken from Ref. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dispersion of the ordinary refractive index (n o ) of the ZnGeP2 crystal in the THz spectral range. Curves 1, 2, 3, and 4 are obtained from the dispersion data of Refs. 10,7,8, and Eq. (1) of the present paper, respectively.

Fig. 2
Fig. 2

External phase-matching angle θext versus λ3 for oe-o DFM. THz ordinary refractive indices are obtained from Refs. 10,7,8, and our Eq. (1) for curves 1, 2, 3, and 4, respectively. Reference 10 has been used for the calculation of the refractive indices at the input pump wavelengths. The horizontal and vertical error bars show the uncertainties in the experimental data (squares).9

Fig. 3
Fig. 3

External phase-matching angle θext versus λ3 for oe-e DFM. For the curves 2, 3, and 4, the ordinary refractive index (n o) at a generated THz wavelength (λ3) has been obtained from Refs. 7,8, and Eq. (1), respectively, and the corresponding extraordinary THz index (n e) has been calculated as in Ref. 12. For curve 1, both n o and n e for each λ3 have been calculated with the Sellmeier dispersion of Ref. 10, while those for the input pump wavelengths have been calculated from Ref. 10 for all curves. The horizontal and vertical error bars show the uncertainties in the experimental data (squares).9

Fig. 4
Fig. 4

Internal phase-matching angle θint versus λ3 for eo-o DFM between CO2 laser radiations. Computed curves 1, 2, 3, and 4 are based on THz ordinary index data from Refs. 10,7,8, and our Eq. (1), respectively, while Ref. 10 has been used for the calculation of the refractive indices at the input wavelengths. The error bar shows the uncertainty in the experimental data (squares).7

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

noλ2=10.93904+0.60675λ2/λ2-1600,

Metrics