## Abstract

The influence of lidar data systematic errors on the retrieved particulate extinction coefficient profile in clear atmospheres is investigated. Particularly, two sources of the extinction coefficient profile distortions are analyzed: (1) a zero-line offset remaining after subtraction of an inaccurately determined signal background component and (2) a far-end incomplete overlap due to poor adjustment of the lidar system optics. Inversion results for simulated lidar signals, obtained with the near- and far-end solutions, are presented that show advantages of the near-end solution for clear atmospheres.

© 2004 Optical Society of America

Full Article |

PDF Article
### Equations (4)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${P}_{\sum}\left(r\right)=P\left(r\right)+B={C}_{0}q\left(r\right)\frac{{\mathrm{\beta}}_{\mathrm{\pi},p}\left(r\right)+{\mathrm{\beta}}_{\mathrm{\pi},m}\left(r\right)}{{r}^{2}}\times exp\left\{-2{\int}_{0}^{r}\left[{\mathrm{\kappa}}_{p}\left(x\right)+{\mathrm{\kappa}}_{m}\left(x\right)\right]\mathrm{d}x\right\}+B,$$
(2)
$${Z}_{r}\left(r\right)=\left[{P}_{\sum}\left(r\right)-B\right]{r}^{2}.$$
(3)
$${\mathrm{\kappa}}_{p}\left(r\right)=\frac{{Z}_{r}\left(r\right)Y\left(r\right)}{\frac{{Z}_{r}\left({r}_{b}\right)Y\left({r}_{b}\right)}{{\mathrm{\kappa}}_{p}\left({r}_{b}\right)+\frac{3}{8\mathrm{\pi}{\mathrm{\Pi}}_{p}}{\mathrm{\kappa}}_{m}\left({r}_{b}\right)}-2{{\int}_{{r}_{b}}}^{r}{Z}_{r}\left(x\right)Y\left(x\right)\mathrm{d}x}-\frac{3}{8\mathrm{\pi}{\mathrm{\Pi}}_{p}}{\mathrm{\kappa}}_{m}\left(r\right),$$
(4)
$$Y\left(r\right)=exp\left[-2\left(\frac{3}{8\mathrm{\pi}{\mathrm{\Pi}}_{p}}-1\right){\int}_{{r}_{0}}^{r}{\mathrm{\kappa}}_{m}\left(x\right)\mathrm{d}x\right],$$