Abstract

The next generation of optical data storage system beyond DVDs will use blue laser light and an objective lens with a high numerical aperture of 0.85 to increase storage capacity. Such high numerical aperture systems have an inherent higher sensitivity to aberrations. In particular, the spherical aberration caused by cover layer thickness tolerances and—more obvious—by dual-layer disks with a typical separation of approximately 20 μm between the two layers must be compensated. We propose a novel transmissive nematic liquid-crystal device, which is capable of compensating spherical aberration that occurs during the operation of optical pickup systems.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Richter, H. Hofmann, J. Knittel, O. Kawakubo, T. Kashiwagi, A. Mijiritskii, J. Hellmig, “System aspects of dual-layer phase-change recording with high numerical aperture optics and blue laser,” Jpn. J. Appl. Phys. 42, 956–960 (2003).
    [CrossRef]
  2. J. Braat, “Influence of substrate thickness on optical disk readout,” Appl. Opt. 36, 8056–8062 (1997).
    [CrossRef]
  3. I. Ichimura, F. Maeda, K. Osato, K. Yamamoto, Y. Kasami, “Optical disk recording using a GaN blue-violet laser diode,” Jpn. J. Appl. Phys. 39, 937–942 (2000).
    [CrossRef]
  4. S. Stallinga, J. J. Vrehen, J. Wals, H. Stapert, E. Verstegen, “Liquid crystal aberration compensation devices,” in Optical Storage and Optical Information Processing, H.-P. D. Shieh, T. D. Milster, eds., Proc. SPIE4081, 50–59 (2000).
    [CrossRef]
  5. S. Ohtaki, N. Murao, M. Ogasawara, M. Iwasaki, “The applications of a liquid crystal panel for the 15 GByte optical disk systems,” Jpn. J. Appl. Phys. 38, 1744–1749 (1999).
    [CrossRef]
  6. I.-C. Khoo, S.-T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
    [CrossRef]
  7. A. V. Kudryashov, J. Gonglewski, S. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
    [CrossRef]
  8. S. Miyanabe, H. Kuribayashi, K. Yamamoto, “New equalizer to improve signal-to-noise ratio,” Jpn. J. Appl. Phys. 38, 1715–1719 (1999).
    [CrossRef]
  9. S. G. Stan, The CD-ROM Drive: A Brief System Description (Kluwer Academic, Boston, Mass., 1998).
    [CrossRef]

2003

H. Richter, H. Hofmann, J. Knittel, O. Kawakubo, T. Kashiwagi, A. Mijiritskii, J. Hellmig, “System aspects of dual-layer phase-change recording with high numerical aperture optics and blue laser,” Jpn. J. Appl. Phys. 42, 956–960 (2003).
[CrossRef]

2000

I. Ichimura, F. Maeda, K. Osato, K. Yamamoto, Y. Kasami, “Optical disk recording using a GaN blue-violet laser diode,” Jpn. J. Appl. Phys. 39, 937–942 (2000).
[CrossRef]

1999

S. Ohtaki, N. Murao, M. Ogasawara, M. Iwasaki, “The applications of a liquid crystal panel for the 15 GByte optical disk systems,” Jpn. J. Appl. Phys. 38, 1744–1749 (1999).
[CrossRef]

S. Miyanabe, H. Kuribayashi, K. Yamamoto, “New equalizer to improve signal-to-noise ratio,” Jpn. J. Appl. Phys. 38, 1715–1719 (1999).
[CrossRef]

1997

A. V. Kudryashov, J. Gonglewski, S. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
[CrossRef]

J. Braat, “Influence of substrate thickness on optical disk readout,” Appl. Opt. 36, 8056–8062 (1997).
[CrossRef]

Braat, J.

Browne, S.

A. V. Kudryashov, J. Gonglewski, S. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
[CrossRef]

Gonglewski, J.

A. V. Kudryashov, J. Gonglewski, S. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
[CrossRef]

Hellmig, J.

H. Richter, H. Hofmann, J. Knittel, O. Kawakubo, T. Kashiwagi, A. Mijiritskii, J. Hellmig, “System aspects of dual-layer phase-change recording with high numerical aperture optics and blue laser,” Jpn. J. Appl. Phys. 42, 956–960 (2003).
[CrossRef]

Highland, R.

A. V. Kudryashov, J. Gonglewski, S. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
[CrossRef]

Hofmann, H.

H. Richter, H. Hofmann, J. Knittel, O. Kawakubo, T. Kashiwagi, A. Mijiritskii, J. Hellmig, “System aspects of dual-layer phase-change recording with high numerical aperture optics and blue laser,” Jpn. J. Appl. Phys. 42, 956–960 (2003).
[CrossRef]

Ichimura, I.

I. Ichimura, F. Maeda, K. Osato, K. Yamamoto, Y. Kasami, “Optical disk recording using a GaN blue-violet laser diode,” Jpn. J. Appl. Phys. 39, 937–942 (2000).
[CrossRef]

Iwasaki, M.

S. Ohtaki, N. Murao, M. Ogasawara, M. Iwasaki, “The applications of a liquid crystal panel for the 15 GByte optical disk systems,” Jpn. J. Appl. Phys. 38, 1744–1749 (1999).
[CrossRef]

Kasami, Y.

I. Ichimura, F. Maeda, K. Osato, K. Yamamoto, Y. Kasami, “Optical disk recording using a GaN blue-violet laser diode,” Jpn. J. Appl. Phys. 39, 937–942 (2000).
[CrossRef]

Kashiwagi, T.

H. Richter, H. Hofmann, J. Knittel, O. Kawakubo, T. Kashiwagi, A. Mijiritskii, J. Hellmig, “System aspects of dual-layer phase-change recording with high numerical aperture optics and blue laser,” Jpn. J. Appl. Phys. 42, 956–960 (2003).
[CrossRef]

Kawakubo, O.

H. Richter, H. Hofmann, J. Knittel, O. Kawakubo, T. Kashiwagi, A. Mijiritskii, J. Hellmig, “System aspects of dual-layer phase-change recording with high numerical aperture optics and blue laser,” Jpn. J. Appl. Phys. 42, 956–960 (2003).
[CrossRef]

Khoo, I.-C.

I.-C. Khoo, S.-T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
[CrossRef]

Knittel, J.

H. Richter, H. Hofmann, J. Knittel, O. Kawakubo, T. Kashiwagi, A. Mijiritskii, J. Hellmig, “System aspects of dual-layer phase-change recording with high numerical aperture optics and blue laser,” Jpn. J. Appl. Phys. 42, 956–960 (2003).
[CrossRef]

Kudryashov, A. V.

A. V. Kudryashov, J. Gonglewski, S. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
[CrossRef]

Kuribayashi, H.

S. Miyanabe, H. Kuribayashi, K. Yamamoto, “New equalizer to improve signal-to-noise ratio,” Jpn. J. Appl. Phys. 38, 1715–1719 (1999).
[CrossRef]

Maeda, F.

I. Ichimura, F. Maeda, K. Osato, K. Yamamoto, Y. Kasami, “Optical disk recording using a GaN blue-violet laser diode,” Jpn. J. Appl. Phys. 39, 937–942 (2000).
[CrossRef]

Mijiritskii, A.

H. Richter, H. Hofmann, J. Knittel, O. Kawakubo, T. Kashiwagi, A. Mijiritskii, J. Hellmig, “System aspects of dual-layer phase-change recording with high numerical aperture optics and blue laser,” Jpn. J. Appl. Phys. 42, 956–960 (2003).
[CrossRef]

Miyanabe, S.

S. Miyanabe, H. Kuribayashi, K. Yamamoto, “New equalizer to improve signal-to-noise ratio,” Jpn. J. Appl. Phys. 38, 1715–1719 (1999).
[CrossRef]

Murao, N.

S. Ohtaki, N. Murao, M. Ogasawara, M. Iwasaki, “The applications of a liquid crystal panel for the 15 GByte optical disk systems,” Jpn. J. Appl. Phys. 38, 1744–1749 (1999).
[CrossRef]

Ogasawara, M.

S. Ohtaki, N. Murao, M. Ogasawara, M. Iwasaki, “The applications of a liquid crystal panel for the 15 GByte optical disk systems,” Jpn. J. Appl. Phys. 38, 1744–1749 (1999).
[CrossRef]

Ohtaki, S.

S. Ohtaki, N. Murao, M. Ogasawara, M. Iwasaki, “The applications of a liquid crystal panel for the 15 GByte optical disk systems,” Jpn. J. Appl. Phys. 38, 1744–1749 (1999).
[CrossRef]

Osato, K.

I. Ichimura, F. Maeda, K. Osato, K. Yamamoto, Y. Kasami, “Optical disk recording using a GaN blue-violet laser diode,” Jpn. J. Appl. Phys. 39, 937–942 (2000).
[CrossRef]

Richter, H.

H. Richter, H. Hofmann, J. Knittel, O. Kawakubo, T. Kashiwagi, A. Mijiritskii, J. Hellmig, “System aspects of dual-layer phase-change recording with high numerical aperture optics and blue laser,” Jpn. J. Appl. Phys. 42, 956–960 (2003).
[CrossRef]

Stallinga, S.

S. Stallinga, J. J. Vrehen, J. Wals, H. Stapert, E. Verstegen, “Liquid crystal aberration compensation devices,” in Optical Storage and Optical Information Processing, H.-P. D. Shieh, T. D. Milster, eds., Proc. SPIE4081, 50–59 (2000).
[CrossRef]

Stan, S. G.

S. G. Stan, The CD-ROM Drive: A Brief System Description (Kluwer Academic, Boston, Mass., 1998).
[CrossRef]

Stapert, H.

S. Stallinga, J. J. Vrehen, J. Wals, H. Stapert, E. Verstegen, “Liquid crystal aberration compensation devices,” in Optical Storage and Optical Information Processing, H.-P. D. Shieh, T. D. Milster, eds., Proc. SPIE4081, 50–59 (2000).
[CrossRef]

Verstegen, E.

S. Stallinga, J. J. Vrehen, J. Wals, H. Stapert, E. Verstegen, “Liquid crystal aberration compensation devices,” in Optical Storage and Optical Information Processing, H.-P. D. Shieh, T. D. Milster, eds., Proc. SPIE4081, 50–59 (2000).
[CrossRef]

Vrehen, J. J.

S. Stallinga, J. J. Vrehen, J. Wals, H. Stapert, E. Verstegen, “Liquid crystal aberration compensation devices,” in Optical Storage and Optical Information Processing, H.-P. D. Shieh, T. D. Milster, eds., Proc. SPIE4081, 50–59 (2000).
[CrossRef]

Wals, J.

S. Stallinga, J. J. Vrehen, J. Wals, H. Stapert, E. Verstegen, “Liquid crystal aberration compensation devices,” in Optical Storage and Optical Information Processing, H.-P. D. Shieh, T. D. Milster, eds., Proc. SPIE4081, 50–59 (2000).
[CrossRef]

Wu, S.-T.

I.-C. Khoo, S.-T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
[CrossRef]

Yamamoto, K.

I. Ichimura, F. Maeda, K. Osato, K. Yamamoto, Y. Kasami, “Optical disk recording using a GaN blue-violet laser diode,” Jpn. J. Appl. Phys. 39, 937–942 (2000).
[CrossRef]

S. Miyanabe, H. Kuribayashi, K. Yamamoto, “New equalizer to improve signal-to-noise ratio,” Jpn. J. Appl. Phys. 38, 1715–1719 (1999).
[CrossRef]

Appl. Opt.

Jpn. J. Appl. Phys.

I. Ichimura, F. Maeda, K. Osato, K. Yamamoto, Y. Kasami, “Optical disk recording using a GaN blue-violet laser diode,” Jpn. J. Appl. Phys. 39, 937–942 (2000).
[CrossRef]

S. Ohtaki, N. Murao, M. Ogasawara, M. Iwasaki, “The applications of a liquid crystal panel for the 15 GByte optical disk systems,” Jpn. J. Appl. Phys. 38, 1744–1749 (1999).
[CrossRef]

H. Richter, H. Hofmann, J. Knittel, O. Kawakubo, T. Kashiwagi, A. Mijiritskii, J. Hellmig, “System aspects of dual-layer phase-change recording with high numerical aperture optics and blue laser,” Jpn. J. Appl. Phys. 42, 956–960 (2003).
[CrossRef]

S. Miyanabe, H. Kuribayashi, K. Yamamoto, “New equalizer to improve signal-to-noise ratio,” Jpn. J. Appl. Phys. 38, 1715–1719 (1999).
[CrossRef]

Opt. Commun.

A. V. Kudryashov, J. Gonglewski, S. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
[CrossRef]

Other

S. G. Stan, The CD-ROM Drive: A Brief System Description (Kluwer Academic, Boston, Mass., 1998).
[CrossRef]

I.-C. Khoo, S.-T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
[CrossRef]

S. Stallinga, J. J. Vrehen, J. Wals, H. Stapert, E. Verstegen, “Liquid crystal aberration compensation devices,” in Optical Storage and Optical Information Processing, H.-P. D. Shieh, T. D. Milster, eds., Proc. SPIE4081, 50–59 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Optical setup for the simulations.

Fig. 2
Fig. 2

Simulated OPD on the first data layer (80 μm behind the cover layer) without use of the LC device.

Fig. 3
Fig. 3

Simulated OPD on the second data layer (100 μm behind the cover layer) without use of the LC device.

Fig. 4
Fig. 4

Simulated OPD on the second data layer by use of the LC device.

Fig. 5
Fig. 5

Illustration of the alignment of the LC molecules in an electric field.

Fig. 6
Fig. 6

Electrode design of the LC device.

Fig. 7
Fig. 7

Principle of conductive ladder meshing.

Fig. 8
Fig. 8

Dependence of the effective birefringence versus applied voltage.

Fig. 9
Fig. 9

Schematic demonstration of possible lens forms.

Fig. 10
Fig. 10

Measured wave front without a LC device.

Fig. 11
Fig. 11

Measurement simply shows the ability of the LC device to flatten the spherical wave front when it is switched on.

Fig. 12
Fig. 12

Measurements of the switching time for a phase shift from 0 to 2π and back. Consider the comparatively slow decay time.

Fig. 13
Fig. 13

Experimental setup to measure the focal spot quality.

Fig. 14
Fig. 14

Cross section of the focal spot at 230 mm. The LC device is switched off.

Fig. 15
Fig. 15

Cross section of the focal spot at 430 mm. The LC device is switched on. The base level indicates the presence of higher-order aberrations, which have not been characterized at this state.

Fig. 16
Fig. 16

Experimental setup of a Blu-Ray test drive to evaluate the performance of the LC device.

Fig. 17
Fig. 17

Eye pattern from the 80-μm layer.

Fig. 18
Fig. 18

Eye pattern from the 100-μm layer.

Tables (1)

Tables Icon

Table 1 Measured and Calculated Temporal Response of the LC Devicea

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I=I0 sin2 2α sin2φ/2,
τrise=γ1d2K11π21VVth2-1,
τdecay=γ1d2K11π21VbVth2-1,
fh=f2d-f1d-f1+f2,

Metrics