M. S. Mirotznik, D. W. Prather, J. N. Mait, W. A. Beck, S. Shi, X. Gao, “Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method,” Appl. Opt. 39, 2871–2880 (2000).

[CrossRef]

C. David, “Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements,” Microelectron. Eng. 53, 677–680 (2000).

[CrossRef]

W. Yu, R. Mittra, “A technique for improving the accuracy of the nonuniform (FDTD) algorithm,” IEEE Trans. Microwave Theory Tech. 47, 353–356 (1999).

[CrossRef]

D. W. Prather, S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements,” J. Opt. Soc. Am. A 16, 1131–1142 (1999).

[CrossRef]

S. Shi, D. W. Prather, “Vector-based plane-wave spectrum method for the propagation of cylindrical electromagnetic fields,” Opt. Lett. 24, 1445–1447 (1999).

[CrossRef]

F. L. Teixeira, W. C. Chew, “PML - FDTD in cylindrical and spherical grids,” IEEE Microwave Guid. Wave Lett. 7, 285–287 (1997).

[CrossRef]

S. D. Gedney, “An anistropic perfectly matched layer-absorbing medium for the truncation of finite-difference time-domain lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).

[CrossRef]

A. Navarro, M. J. Nunez, “Finite-difference time-domain method coupled with fast Fourier transform: a generalization to open cylindrical devices,” IEEE J. Microwave Theo. Tech. 42, 870–874 (1994).

[CrossRef]

I. V. Minin, O. V. Minin, “Wide angle multicomponent diffraction microwave objective,” J. Commun. Technol. Electron. 31, 16–21 (1986).

S. T. Bobrov, G. I. Greisukh, “Monochromatic aberrations of a two-component diffraction optical system,” Opt. Spectrosc. 49, 809–813 (1980).

G. I. Greisukh, “Correction of third-order chromatic aberrations of a two-lens holographic objective,” Opt. Spectrosc. 49, 1212–1215 (1980).

G. Mur, “Finite-difference method for the solution of electromagnetic waveguide discontinuity problem,” IEEE Trans. Microwave Theory Tech. MTT-22, 54–57 (1974).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

P. Moffa, L. Yujiri, K. Jordan, R. Chu, H. Agravante, S. Fornaca, “Passive millimeter wave camera flight tests,” in Passive Millimeter-wave Imaging Technology IV, R. M. Smith, R. Appleby, eds., Proc. SPIE4032, 9–17 (2000).

[CrossRef]

S. T. Bobrov, G. I. Greisukh, “Monochromatic aberrations of a two-component diffraction optical system,” Opt. Spectrosc. 49, 809–813 (1980).

M. Born, E. Wolf, Principles of Optics, 6th ed. (Wheaton, Exeter, UK, 1986).

D. A. Buralli, G. M. Morris, “Design of two- and three-element diffractive Keplerian telescopes,” Appl. Opt. 31, 38–43 (1992).

[CrossRef]
[PubMed]

D. A. Buralli, G. M. Morris, “Design of diffractive singlets for monochromatic imaging,” Appl. Opt. 30, 2151–2158 (1991).

[CrossRef]
[PubMed]

D. A. Buralli, G. M. Morris, “Design of a wide field diffractive landscape lens,” Appl. Opt. 28, 3950–3959 (1989).

[CrossRef]
[PubMed]

D. A. Buralli, Diffractive Optics: Design Principles and Applications (University of Rochester, Rochester, N.Y., 1991).

F. L. Teixeira, W. C. Chew, “PML - FDTD in cylindrical and spherical grids,” IEEE Microwave Guid. Wave Lett. 7, 285–287 (1997).

[CrossRef]

P. Moffa, L. Yujiri, K. Jordan, R. Chu, H. Agravante, S. Fornaca, “Passive millimeter wave camera flight tests,” in Passive Millimeter-wave Imaging Technology IV, R. M. Smith, R. Appleby, eds., Proc. SPIE4032, 9–17 (2000).

[CrossRef]

C. David, “Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements,” Microelectron. Eng. 53, 677–680 (2000).

[CrossRef]

P. Moffa, L. Yujiri, K. Jordan, R. Chu, H. Agravante, S. Fornaca, “Passive millimeter wave camera flight tests,” in Passive Millimeter-wave Imaging Technology IV, R. M. Smith, R. Appleby, eds., Proc. SPIE4032, 9–17 (2000).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, W. A. Beck, S. Shi, X. Gao, “Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method,” Appl. Opt. 39, 2871–2880 (2000).

[CrossRef]

X. Gao, Design, Fabrication and Characterization of Small Diffractive Optical Elements (University of Delaware, Newark, Del., 2000).

S. D. Gedney, “An anistropic perfectly matched layer-absorbing medium for the truncation of finite-difference time-domain lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).

[CrossRef]

S. T. Bobrov, G. I. Greisukh, “Monochromatic aberrations of a two-component diffraction optical system,” Opt. Spectrosc. 49, 809–813 (1980).

G. I. Greisukh, “Correction of third-order chromatic aberrations of a two-lens holographic objective,” Opt. Spectrosc. 49, 1212–1215 (1980).

A. Taflove, S. C. Hagness, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000).

A. Ishimaru, “Plane wave spectrum method,” in Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, Englewood Cliffs, N.J., 1991), pp. 160–161.

P. Moffa, L. Yujiri, K. Jordan, R. Chu, H. Agravante, S. Fornaca, “Passive millimeter wave camera flight tests,” in Passive Millimeter-wave Imaging Technology IV, R. M. Smith, R. Appleby, eds., Proc. SPIE4032, 9–17 (2000).

[CrossRef]

N. Morita, N. Kumagai, J. R. Mautz, Integral Equation Methods for Electromagnetics (Artech House, Norwood, Mass., 1991).

N. Morita, N. Kumagai, J. R. Mautz, Integral Equation Methods for Electromagnetics (Artech House, Norwood, Mass., 1991).

I. V. Minin, O. V. Minin, “Wide angle multicomponent diffraction microwave objective,” J. Commun. Technol. Electron. 31, 16–21 (1986).

I. V. Minin, O. V. Minin, “Wide angle multicomponent diffraction microwave objective,” J. Commun. Technol. Electron. 31, 16–21 (1986).

W. Yu, R. Mittra, “A technique for improving the accuracy of the nonuniform (FDTD) algorithm,” IEEE Trans. Microwave Theory Tech. 47, 353–356 (1999).

[CrossRef]

P. Moffa, L. Yujiri, K. Jordan, R. Chu, H. Agravante, S. Fornaca, “Passive millimeter wave camera flight tests,” in Passive Millimeter-wave Imaging Technology IV, R. M. Smith, R. Appleby, eds., Proc. SPIE4032, 9–17 (2000).

[CrossRef]

N. Morita, N. Kumagai, J. R. Mautz, Integral Equation Methods for Electromagnetics (Artech House, Norwood, Mass., 1991).

D. A. Buralli, G. M. Morris, “Design of two- and three-element diffractive Keplerian telescopes,” Appl. Opt. 31, 38–43 (1992).

[CrossRef]
[PubMed]

D. A. Buralli, G. M. Morris, “Design of diffractive singlets for monochromatic imaging,” Appl. Opt. 30, 2151–2158 (1991).

[CrossRef]
[PubMed]

D. A. Buralli, G. M. Morris, “Design of a wide field diffractive landscape lens,” Appl. Opt. 28, 3950–3959 (1989).

[CrossRef]
[PubMed]

G. Mur, “Finite-difference method for the solution of electromagnetic waveguide discontinuity problem,” IEEE Trans. Microwave Theory Tech. MTT-22, 54–57 (1974).

[CrossRef]

A. Navarro, M. J. Nunez, “Finite-difference time-domain method coupled with fast Fourier transform: a generalization to open cylindrical devices,” IEEE J. Microwave Theo. Tech. 42, 870–874 (1994).

[CrossRef]

A. Navarro, M. J. Nunez, “Finite-difference time-domain method coupled with fast Fourier transform: a generalization to open cylindrical devices,” IEEE J. Microwave Theo. Tech. 42, 870–874 (1994).

[CrossRef]

D. W. Prather, D. Pustai, S. Shi, “Performance of multilevel diffractive lenses as a function of f-number,” Appl. Opt. 40, 207–210 (2001).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, W. A. Beck, S. Shi, X. Gao, “Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method,” Appl. Opt. 39, 2871–2880 (2000).

[CrossRef]

D. W. Prather, S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements,” J. Opt. Soc. Am. A 16, 1131–1142 (1999).

[CrossRef]

S. Shi, D. W. Prather, “Vector-based plane-wave spectrum method for the propagation of cylindrical electromagnetic fields,” Opt. Lett. 24, 1445–1447 (1999).

[CrossRef]

D. W. Prather, D. Pustai, S. Shi, “Performance of multilevel diffractive lenses as a function of f-number,” Appl. Opt. 40, 207–210 (2001).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, W. A. Beck, S. Shi, X. Gao, “Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method,” Appl. Opt. 39, 2871–2880 (2000).

[CrossRef]

D. W. Prather, S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements,” J. Opt. Soc. Am. A 16, 1131–1142 (1999).

[CrossRef]

S. Shi, D. W. Prather, “Vector-based plane-wave spectrum method for the propagation of cylindrical electromagnetic fields,” Opt. Lett. 24, 1445–1447 (1999).

[CrossRef]

A. Taflove, S. C. Hagness, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000).

F. L. Teixeira, W. C. Chew, “PML - FDTD in cylindrical and spherical grids,” IEEE Microwave Guid. Wave Lett. 7, 285–287 (1997).

[CrossRef]

M. Born, E. Wolf, Principles of Optics, 6th ed. (Wheaton, Exeter, UK, 1986).

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

W. Yu, R. Mittra, “A technique for improving the accuracy of the nonuniform (FDTD) algorithm,” IEEE Trans. Microwave Theory Tech. 47, 353–356 (1999).

[CrossRef]

P. Moffa, L. Yujiri, K. Jordan, R. Chu, H. Agravante, S. Fornaca, “Passive millimeter wave camera flight tests,” in Passive Millimeter-wave Imaging Technology IV, R. M. Smith, R. Appleby, eds., Proc. SPIE4032, 9–17 (2000).

[CrossRef]

D. A. Buralli, G. M. Morris, “Design of a wide field diffractive landscape lens,” Appl. Opt. 28, 3950–3959 (1989).

[CrossRef]
[PubMed]

D. A. Buralli, G. M. Morris, “Design of diffractive singlets for monochromatic imaging,” Appl. Opt. 30, 2151–2158 (1991).

[CrossRef]
[PubMed]

D. A. Buralli, G. M. Morris, “Design of two- and three-element diffractive Keplerian telescopes,” Appl. Opt. 31, 38–43 (1992).

[CrossRef]
[PubMed]

M. S. Mirotznik, D. W. Prather, J. N. Mait, W. A. Beck, S. Shi, X. Gao, “Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method,” Appl. Opt. 39, 2871–2880 (2000).

[CrossRef]

D. W. Prather, D. Pustai, S. Shi, “Performance of multilevel diffractive lenses as a function of f-number,” Appl. Opt. 40, 207–210 (2001).

[CrossRef]

A. Navarro, M. J. Nunez, “Finite-difference time-domain method coupled with fast Fourier transform: a generalization to open cylindrical devices,” IEEE J. Microwave Theo. Tech. 42, 870–874 (1994).

[CrossRef]

F. L. Teixeira, W. C. Chew, “PML - FDTD in cylindrical and spherical grids,” IEEE Microwave Guid. Wave Lett. 7, 285–287 (1997).

[CrossRef]

S. D. Gedney, “An anistropic perfectly matched layer-absorbing medium for the truncation of finite-difference time-domain lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

W. Yu, R. Mittra, “A technique for improving the accuracy of the nonuniform (FDTD) algorithm,” IEEE Trans. Microwave Theory Tech. 47, 353–356 (1999).

[CrossRef]

G. Mur, “Finite-difference method for the solution of electromagnetic waveguide discontinuity problem,” IEEE Trans. Microwave Theory Tech. MTT-22, 54–57 (1974).

[CrossRef]

I. V. Minin, O. V. Minin, “Wide angle multicomponent diffraction microwave objective,” J. Commun. Technol. Electron. 31, 16–21 (1986).

C. David, “Fabrication of stair-case profiles with high aspect ratios for blazed diffractive optical elements,” Microelectron. Eng. 53, 677–680 (2000).

[CrossRef]

S. T. Bobrov, G. I. Greisukh, “Monochromatic aberrations of a two-component diffraction optical system,” Opt. Spectrosc. 49, 809–813 (1980).

G. I. Greisukh, “Correction of third-order chromatic aberrations of a two-lens holographic objective,” Opt. Spectrosc. 49, 1212–1215 (1980).

A. Taflove, S. C. Hagness, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 2000).

M. Born, E. Wolf, Principles of Optics, 6th ed. (Wheaton, Exeter, UK, 1986).

A. Ishimaru, “Plane wave spectrum method,” in Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, Englewood Cliffs, N.J., 1991), pp. 160–161.

P. Moffa, L. Yujiri, K. Jordan, R. Chu, H. Agravante, S. Fornaca, “Passive millimeter wave camera flight tests,” in Passive Millimeter-wave Imaging Technology IV, R. M. Smith, R. Appleby, eds., Proc. SPIE4032, 9–17 (2000).

[CrossRef]

D. A. Buralli, Diffractive Optics: Design Principles and Applications (University of Rochester, Rochester, N.Y., 1991).

X. Gao, Design, Fabrication and Characterization of Small Diffractive Optical Elements (University of Delaware, Newark, Del., 2000).

N. Morita, N. Kumagai, J. R. Mautz, Integral Equation Methods for Electromagnetics (Artech House, Norwood, Mass., 1991).