Abstract

A method to determine the absolute refractive index of materials available in the shape of flat wafers with parallel sides by using interferometric techniques is presented. With this method, nondestructive, sample-specific measurements can be made. The method is tested by using silicon, germanium and zinc selenide, and measurements for both the ordinary and extraordinary axes of ZnGeP2 for temperatures of 300 and 77 K are reported.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Daimon, A. Masumura, “High-accuracy measurements of the refractive index and its temperature coefficient of calcium fluoride in a wide wavelength range from 138 to 2326 nm,” Appl. Opt. 41, 5275–5281 (2002).
    [CrossRef]
  2. D. E. Zelmon, E. A. Hanning, P. G. Schunemann, “Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9 μm with implications for phase matching in optical frequency-conversion devices,” J. Opt. Soc. Am. B 18, 1307–1310 (2001).
    [CrossRef]
  3. P. S. Hauge, “Recent developments in instrumentation in ellipsometry,” Surf. Sci. 96, 108–140 (1980).
    [CrossRef]
  4. Z. Huang, J. Chu, “The refractive index dispersion of Hg1-x CdxTe by infrared spectroscopic ellipsometry,” Infrared Phys. 42, 77–80 (2001).
    [CrossRef]
  5. P. Adamson, “Laser diagnostics of nanoscale dielectric films on absorbing substrate by differential reflectivity and ellipsometry,” Opt. Laser Technol. 34, 561–568 (2002).
    [CrossRef]
  6. D. W. Fischer, M. C. Ohmer, P. G. Schunemann, T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77, 5942–5945 (1995).
    [CrossRef]
  7. H. J. Scheel, “Historical aspects of crystal growth technology,” J. Crystal Growth 211, 1–12 (2000).
    [CrossRef]
  8. P. G. Schunemann, S. D. Setzler, T. M. Pollak, “Phase-matched crystal growth of AgGaSe2 and AgGa1-xInxSe2,” J. Crystal Growth 211, 257–264 (2000).
    [CrossRef]
  9. P. Klock, Handbook of Infrared Optical Materials (Marcel Dekker, New York, 1991).
  10. C. A. Proctor, “Index of refraction and dispersion with the interferometer,” Phys. Rev. 24, 195–201 (1907).
  11. M. S. Shumate, “An interferometric measurement of index of refraction,” Engineer’s Degree Thesis (California Institute of Technology, Pasadena, Calif., 1964), http://etd.caltech.edu/etd/available/etd-10302002-153247/ .
  12. M. S. Shumate, “Interferometric measurement of large indices of refraction,” Appl. Opt. 5, 327–331 (1966).
    [CrossRef] [PubMed]
  13. J. Chamberlain, J. Haigh, M. J. Hine, “Phase modulation in far infrared (submillimetre-wave) interferometers: III-laser refractometry,” Infrared Phys. 11, 75–84 (1971).
    [CrossRef]
  14. U. Schlarb, K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751–757 (1994).
    [CrossRef]
  15. S. Follonier, Ch. Bosshard, U. Meier, G. Knöpfle, C. Serbutoviez, F. Pan, P. Günter, “New nonlinear-optical organic crystal: 4-dimethyl-aminobenzaldehyde-4-nitrophenyl-lydrazone,” J. Opt. Soc. Am. B 14, 593–601 (1997).
    [CrossRef]
  16. J. F. H. Nicholls, B. Henderson, B. H. T. Chai, “Accurate determination of the indices of refraction of nonlinear optical crystals,” Appl. Opt. 36, 8587–8594 (1997).
    [CrossRef]
  17. M. S. Wong, F. Pan, M. Bösch, R. Spreiter, C. Bosshard, P. Günter, V. Gramlich, “Novel electro-optic molecular cocrystals with ideal chromophoric orientation and large second-order optical nonlinearities,” J. Opt. Soc. Am. B 15, 426–431 (1998).
    [CrossRef]
  18. R. E. Gagnon, P. H. Gammon, H. Kiefte, M. J. Clouter, “Determination of the refractive index of liquid carbon monoxide,” Appl. Opt. 18, 1237–1239 (1979).
    [CrossRef] [PubMed]
  19. M. Musso, R. Aschauer, A. Asenbaum, C. Vasi, E. Wilhelm, “Interferometric determination of the refractive index of liquid sulphur dioxide,” Meas. Sci. Technol. 11, 1714–1720 (2000).
    [CrossRef]
  20. G. C. Bhar, S. Das, U. Chatterjee, K. L. Vodopyanov, “Temperature-tunable second-harmonic generation in zinc germanium phosphide,” Appl. Phys. Lett. 54, 313–314 (1989).
    [CrossRef]
  21. A. A. Barykin, S. V. Davidov, V. D. Dorokhov, V. P. Zakharov, V. V. Butuzov, “Generation of the second harmonic of CO2 laser pulses in a ZnGeP2 crystal,” Quantum Electron. 23, 688–693 (1993).
    [CrossRef]
  22. H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hedge, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
    [CrossRef]
  23. P. D. Mason, D. J. Jackson, E. K. Gorton, “CO2 laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
    [CrossRef]
  24. K. L. Vodopyanov, P. G. Schunemann, “Broadly tunable noncritically phase-matched ZnGeP2 optical parametric oscillator with a 2-μJ pump threshold,” Opt. Lett. 28, 441–443 (2003).
    [CrossRef] [PubMed]
  25. E. D. Palik, “Germanium (Ge),” in Handbook of Optical Constants of Solids (Academic, New York, 1998), pp. 471–478.
  26. E. D. Palik, “Silicone (Si),” in Handbook of Optical Constants of Solids (Academic, New York, 1998), pp. 555–568.
  27. E. D. Palik, “Zinc Selenide (ZnSe), Zinc Telluride (ZnTe),” in Handbook of Optical Constants II (Academic, New York, 1991), pp. 751–758.
  28. G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
    [CrossRef]
  29. D. W. Fischer, Mc C. Ohmer, “Temperature dependence of ZnGeP2 birefringence using polarized light interference,” J. Appl. Phys. 81, 425–431 (1997).
    [CrossRef]

2003

2002

M. Daimon, A. Masumura, “High-accuracy measurements of the refractive index and its temperature coefficient of calcium fluoride in a wide wavelength range from 138 to 2326 nm,” Appl. Opt. 41, 5275–5281 (2002).
[CrossRef]

P. Adamson, “Laser diagnostics of nanoscale dielectric films on absorbing substrate by differential reflectivity and ellipsometry,” Opt. Laser Technol. 34, 561–568 (2002).
[CrossRef]

2001

2000

H. J. Scheel, “Historical aspects of crystal growth technology,” J. Crystal Growth 211, 1–12 (2000).
[CrossRef]

P. G. Schunemann, S. D. Setzler, T. M. Pollak, “Phase-matched crystal growth of AgGaSe2 and AgGa1-xInxSe2,” J. Crystal Growth 211, 257–264 (2000).
[CrossRef]

M. Musso, R. Aschauer, A. Asenbaum, C. Vasi, E. Wilhelm, “Interferometric determination of the refractive index of liquid sulphur dioxide,” Meas. Sci. Technol. 11, 1714–1720 (2000).
[CrossRef]

1998

1997

1995

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77, 5942–5945 (1995).
[CrossRef]

1994

U. Schlarb, K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751–757 (1994).
[CrossRef]

P. D. Mason, D. J. Jackson, E. K. Gorton, “CO2 laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
[CrossRef]

1993

A. A. Barykin, S. V. Davidov, V. D. Dorokhov, V. P. Zakharov, V. V. Butuzov, “Generation of the second harmonic of CO2 laser pulses in a ZnGeP2 crystal,” Quantum Electron. 23, 688–693 (1993).
[CrossRef]

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hedge, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

1989

G. C. Bhar, S. Das, U. Chatterjee, K. L. Vodopyanov, “Temperature-tunable second-harmonic generation in zinc germanium phosphide,” Appl. Phys. Lett. 54, 313–314 (1989).
[CrossRef]

1980

P. S. Hauge, “Recent developments in instrumentation in ellipsometry,” Surf. Sci. 96, 108–140 (1980).
[CrossRef]

1979

1971

J. Chamberlain, J. Haigh, M. J. Hine, “Phase modulation in far infrared (submillimetre-wave) interferometers: III-laser refractometry,” Infrared Phys. 11, 75–84 (1971).
[CrossRef]

G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

1966

1907

C. A. Proctor, “Index of refraction and dispersion with the interferometer,” Phys. Rev. 24, 195–201 (1907).

Adamson, P.

P. Adamson, “Laser diagnostics of nanoscale dielectric films on absorbing substrate by differential reflectivity and ellipsometry,” Opt. Laser Technol. 34, 561–568 (2002).
[CrossRef]

Aschauer, R.

M. Musso, R. Aschauer, A. Asenbaum, C. Vasi, E. Wilhelm, “Interferometric determination of the refractive index of liquid sulphur dioxide,” Meas. Sci. Technol. 11, 1714–1720 (2000).
[CrossRef]

Asenbaum, A.

M. Musso, R. Aschauer, A. Asenbaum, C. Vasi, E. Wilhelm, “Interferometric determination of the refractive index of liquid sulphur dioxide,” Meas. Sci. Technol. 11, 1714–1720 (2000).
[CrossRef]

Barykin, A. A.

A. A. Barykin, S. V. Davidov, V. D. Dorokhov, V. P. Zakharov, V. V. Butuzov, “Generation of the second harmonic of CO2 laser pulses in a ZnGeP2 crystal,” Quantum Electron. 23, 688–693 (1993).
[CrossRef]

Betzler, K.

U. Schlarb, K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751–757 (1994).
[CrossRef]

Bhar, G. C.

G. C. Bhar, S. Das, U. Chatterjee, K. L. Vodopyanov, “Temperature-tunable second-harmonic generation in zinc germanium phosphide,” Appl. Phys. Lett. 54, 313–314 (1989).
[CrossRef]

Bösch, M.

Bosshard, C.

Bosshard, Ch.

Boyd, G. D.

G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Buehler, E.

G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Butuzov, V. V.

A. A. Barykin, S. V. Davidov, V. D. Dorokhov, V. P. Zakharov, V. V. Butuzov, “Generation of the second harmonic of CO2 laser pulses in a ZnGeP2 crystal,” Quantum Electron. 23, 688–693 (1993).
[CrossRef]

Chai, B. H. T.

Chamberlain, J.

J. Chamberlain, J. Haigh, M. J. Hine, “Phase modulation in far infrared (submillimetre-wave) interferometers: III-laser refractometry,” Infrared Phys. 11, 75–84 (1971).
[CrossRef]

Chatterjee, U.

G. C. Bhar, S. Das, U. Chatterjee, K. L. Vodopyanov, “Temperature-tunable second-harmonic generation in zinc germanium phosphide,” Appl. Phys. Lett. 54, 313–314 (1989).
[CrossRef]

Chu, J.

Z. Huang, J. Chu, “The refractive index dispersion of Hg1-x CdxTe by infrared spectroscopic ellipsometry,” Infrared Phys. 42, 77–80 (2001).
[CrossRef]

Clouter, M. J.

Daimon, M.

Das, S.

G. C. Bhar, S. Das, U. Chatterjee, K. L. Vodopyanov, “Temperature-tunable second-harmonic generation in zinc germanium phosphide,” Appl. Phys. Lett. 54, 313–314 (1989).
[CrossRef]

Davidov, S. V.

A. A. Barykin, S. V. Davidov, V. D. Dorokhov, V. P. Zakharov, V. V. Butuzov, “Generation of the second harmonic of CO2 laser pulses in a ZnGeP2 crystal,” Quantum Electron. 23, 688–693 (1993).
[CrossRef]

Dorokhov, V. D.

A. A. Barykin, S. V. Davidov, V. D. Dorokhov, V. P. Zakharov, V. V. Butuzov, “Generation of the second harmonic of CO2 laser pulses in a ZnGeP2 crystal,” Quantum Electron. 23, 688–693 (1993).
[CrossRef]

Fischer, D. W.

D. W. Fischer, Mc C. Ohmer, “Temperature dependence of ZnGeP2 birefringence using polarized light interference,” J. Appl. Phys. 81, 425–431 (1997).
[CrossRef]

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77, 5942–5945 (1995).
[CrossRef]

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hedge, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Follonier, S.

Gagnon, R. E.

Gammon, P. H.

Gorton, E. K.

P. D. Mason, D. J. Jackson, E. K. Gorton, “CO2 laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
[CrossRef]

Gramlich, V.

Günter, P.

Haigh, J.

J. Chamberlain, J. Haigh, M. J. Hine, “Phase modulation in far infrared (submillimetre-wave) interferometers: III-laser refractometry,” Infrared Phys. 11, 75–84 (1971).
[CrossRef]

Hanning, E. A.

Hauge, P. S.

P. S. Hauge, “Recent developments in instrumentation in ellipsometry,” Surf. Sci. 96, 108–140 (1980).
[CrossRef]

Hedge, S. M.

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hedge, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Henderson, B.

Henningsen, T.

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hedge, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Hine, M. J.

J. Chamberlain, J. Haigh, M. J. Hine, “Phase modulation in far infrared (submillimetre-wave) interferometers: III-laser refractometry,” Infrared Phys. 11, 75–84 (1971).
[CrossRef]

Hobgood, H. M.

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hedge, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Hopkins, F. K.

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hedge, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Hopkins, R. H.

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hedge, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Huang, Z.

Z. Huang, J. Chu, “The refractive index dispersion of Hg1-x CdxTe by infrared spectroscopic ellipsometry,” Infrared Phys. 42, 77–80 (2001).
[CrossRef]

Jackson, D. J.

P. D. Mason, D. J. Jackson, E. K. Gorton, “CO2 laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
[CrossRef]

Kiefte, H.

Klock, P.

P. Klock, Handbook of Infrared Optical Materials (Marcel Dekker, New York, 1991).

Knöpfle, G.

Mason, P. D.

P. D. Mason, D. J. Jackson, E. K. Gorton, “CO2 laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
[CrossRef]

Masumura, A.

Meier, U.

Mitchel, W. C.

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hedge, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Musso, M.

M. Musso, R. Aschauer, A. Asenbaum, C. Vasi, E. Wilhelm, “Interferometric determination of the refractive index of liquid sulphur dioxide,” Meas. Sci. Technol. 11, 1714–1720 (2000).
[CrossRef]

Nicholls, J. F. H.

Ohmer, M. C.

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77, 5942–5945 (1995).
[CrossRef]

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hedge, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Ohmer, Mc C.

D. W. Fischer, Mc C. Ohmer, “Temperature dependence of ZnGeP2 birefringence using polarized light interference,” J. Appl. Phys. 81, 425–431 (1997).
[CrossRef]

Palik, E. D.

E. D. Palik, “Germanium (Ge),” in Handbook of Optical Constants of Solids (Academic, New York, 1998), pp. 471–478.

E. D. Palik, “Silicone (Si),” in Handbook of Optical Constants of Solids (Academic, New York, 1998), pp. 555–568.

E. D. Palik, “Zinc Selenide (ZnSe), Zinc Telluride (ZnTe),” in Handbook of Optical Constants II (Academic, New York, 1991), pp. 751–758.

Pan, F.

Pollak, T. M.

P. G. Schunemann, S. D. Setzler, T. M. Pollak, “Phase-matched crystal growth of AgGaSe2 and AgGa1-xInxSe2,” J. Crystal Growth 211, 257–264 (2000).
[CrossRef]

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77, 5942–5945 (1995).
[CrossRef]

Proctor, C. A.

C. A. Proctor, “Index of refraction and dispersion with the interferometer,” Phys. Rev. 24, 195–201 (1907).

Scheel, H. J.

H. J. Scheel, “Historical aspects of crystal growth technology,” J. Crystal Growth 211, 1–12 (2000).
[CrossRef]

Schlarb, U.

U. Schlarb, K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751–757 (1994).
[CrossRef]

Schunemann, P. G.

K. L. Vodopyanov, P. G. Schunemann, “Broadly tunable noncritically phase-matched ZnGeP2 optical parametric oscillator with a 2-μJ pump threshold,” Opt. Lett. 28, 441–443 (2003).
[CrossRef] [PubMed]

D. E. Zelmon, E. A. Hanning, P. G. Schunemann, “Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9 μm with implications for phase matching in optical frequency-conversion devices,” J. Opt. Soc. Am. B 18, 1307–1310 (2001).
[CrossRef]

P. G. Schunemann, S. D. Setzler, T. M. Pollak, “Phase-matched crystal growth of AgGaSe2 and AgGa1-xInxSe2,” J. Crystal Growth 211, 257–264 (2000).
[CrossRef]

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77, 5942–5945 (1995).
[CrossRef]

Serbutoviez, C.

Setzler, S. D.

P. G. Schunemann, S. D. Setzler, T. M. Pollak, “Phase-matched crystal growth of AgGaSe2 and AgGa1-xInxSe2,” J. Crystal Growth 211, 257–264 (2000).
[CrossRef]

Shumate, M. S.

Spreiter, R.

Storz, F. G.

G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Thomas, R. N.

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hedge, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Vasi, C.

M. Musso, R. Aschauer, A. Asenbaum, C. Vasi, E. Wilhelm, “Interferometric determination of the refractive index of liquid sulphur dioxide,” Meas. Sci. Technol. 11, 1714–1720 (2000).
[CrossRef]

Vodopyanov, K. L.

K. L. Vodopyanov, P. G. Schunemann, “Broadly tunable noncritically phase-matched ZnGeP2 optical parametric oscillator with a 2-μJ pump threshold,” Opt. Lett. 28, 441–443 (2003).
[CrossRef] [PubMed]

G. C. Bhar, S. Das, U. Chatterjee, K. L. Vodopyanov, “Temperature-tunable second-harmonic generation in zinc germanium phosphide,” Appl. Phys. Lett. 54, 313–314 (1989).
[CrossRef]

Wilhelm, E.

M. Musso, R. Aschauer, A. Asenbaum, C. Vasi, E. Wilhelm, “Interferometric determination of the refractive index of liquid sulphur dioxide,” Meas. Sci. Technol. 11, 1714–1720 (2000).
[CrossRef]

Wong, M. S.

Zakharov, V. P.

A. A. Barykin, S. V. Davidov, V. D. Dorokhov, V. P. Zakharov, V. V. Butuzov, “Generation of the second harmonic of CO2 laser pulses in a ZnGeP2 crystal,” Quantum Electron. 23, 688–693 (1993).
[CrossRef]

Zelmon, D. E.

Appl. Opt.

Appl. Phys. Lett.

G. C. Bhar, S. Das, U. Chatterjee, K. L. Vodopyanov, “Temperature-tunable second-harmonic generation in zinc germanium phosphide,” Appl. Phys. Lett. 54, 313–314 (1989).
[CrossRef]

G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Infrared Phys.

J. Chamberlain, J. Haigh, M. J. Hine, “Phase modulation in far infrared (submillimetre-wave) interferometers: III-laser refractometry,” Infrared Phys. 11, 75–84 (1971).
[CrossRef]

Z. Huang, J. Chu, “The refractive index dispersion of Hg1-x CdxTe by infrared spectroscopic ellipsometry,” Infrared Phys. 42, 77–80 (2001).
[CrossRef]

J. Appl. Phys.

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77, 5942–5945 (1995).
[CrossRef]

D. W. Fischer, Mc C. Ohmer, “Temperature dependence of ZnGeP2 birefringence using polarized light interference,” J. Appl. Phys. 81, 425–431 (1997).
[CrossRef]

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hedge, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

J. Crystal Growth

H. J. Scheel, “Historical aspects of crystal growth technology,” J. Crystal Growth 211, 1–12 (2000).
[CrossRef]

P. G. Schunemann, S. D. Setzler, T. M. Pollak, “Phase-matched crystal growth of AgGaSe2 and AgGa1-xInxSe2,” J. Crystal Growth 211, 257–264 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

M. Musso, R. Aschauer, A. Asenbaum, C. Vasi, E. Wilhelm, “Interferometric determination of the refractive index of liquid sulphur dioxide,” Meas. Sci. Technol. 11, 1714–1720 (2000).
[CrossRef]

Opt. Commun.

P. D. Mason, D. J. Jackson, E. K. Gorton, “CO2 laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
[CrossRef]

Opt. Laser Technol.

P. Adamson, “Laser diagnostics of nanoscale dielectric films on absorbing substrate by differential reflectivity and ellipsometry,” Opt. Laser Technol. 34, 561–568 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev.

C. A. Proctor, “Index of refraction and dispersion with the interferometer,” Phys. Rev. 24, 195–201 (1907).

Phys. Rev. B

U. Schlarb, K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751–757 (1994).
[CrossRef]

Quantum Electron.

A. A. Barykin, S. V. Davidov, V. D. Dorokhov, V. P. Zakharov, V. V. Butuzov, “Generation of the second harmonic of CO2 laser pulses in a ZnGeP2 crystal,” Quantum Electron. 23, 688–693 (1993).
[CrossRef]

Surf. Sci.

P. S. Hauge, “Recent developments in instrumentation in ellipsometry,” Surf. Sci. 96, 108–140 (1980).
[CrossRef]

Other

P. Klock, Handbook of Infrared Optical Materials (Marcel Dekker, New York, 1991).

M. S. Shumate, “An interferometric measurement of index of refraction,” Engineer’s Degree Thesis (California Institute of Technology, Pasadena, Calif., 1964), http://etd.caltech.edu/etd/available/etd-10302002-153247/ .

E. D. Palik, “Germanium (Ge),” in Handbook of Optical Constants of Solids (Academic, New York, 1998), pp. 471–478.

E. D. Palik, “Silicone (Si),” in Handbook of Optical Constants of Solids (Academic, New York, 1998), pp. 555–568.

E. D. Palik, “Zinc Selenide (ZnSe), Zinc Telluride (ZnTe),” in Handbook of Optical Constants II (Academic, New York, 1991), pp. 751–758.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup. The sample is mounted to the bottom of a liquid-nitrogen Dewar inside a small vacuum chamber. The sample-Dewar assembly is connected to a rotation stage outside the vacuum chamber by means of a hollow-shafted rotary feed through. BS, beam splitter.

Fig. 2
Fig. 2

Illustration of (a) a sample oriented with its normal parallel to the incident laser beam and (b) the two angle-dependent optical distances, nd′ and z′.

Fig. 3
Fig. 3

(a) Recorded interferogram for a ZnGeP2 sample with the laser polarization aligned with n e and (b) a close-up of the recorded points for large angles.

Fig. 4
Fig. 4

Experimental and calculated angular phase delay for the interferogram of Fig. 3 as a function of the incident angle, θ.

Tables (1)

Tables Icon

Table 1 Refractive-Index Measurements for Ge, Si, and ZnGeP2, and Their Uncertaintiesa

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Ez0=A0 expikz0xˆ,
ErzD=Ar expiϕrxˆ,
Ar=A0Rbs1-Rbs.
ϕr=2πλ2zrm+zod,
dn2-sin2 θ+1-cos θ,
EszD=As exp4πidλn2-sin2 θ+1-cos θ+iϕsxˆ,
As=Ar1-Rs2,
As=Ar1-Rs2 exp-4πχdλ
ID=Ar2+As2+2ArAs cos4πdλn2-sin2 θ+1-cos θ+ϕ0,
mθπ=4πdλn2-sin2θ-θ0-cosθ-θ0+1+ϕ0.

Metrics