Abstract

The anomalous injection locking of a traveling-wave semiconductor optical amplifier (SOA) and a fiber-pigtailed Fabry–Perot laser diode (FPLD) linked with single-mode and improved side-mode suppression ratio output is demonstrated. We achieve this injection locking by driving the FPLD slightly below threshold and by feedback injecting the FPLD with fractional output of a closed-loop SOA. The SOA-FPLD link lases in a single FPLD longitudinal mode with a reduced linewidth of 0.013 nm and a maximum side-mode-suppressing ratio of 39.7 dB. A precise 3-dB linewidth of 45–50 MHz is also observed from the self-homodyne mode-beating spectrum. The optimized feedback-injecting power for the FPLD is ∼2% of the SOA-FPLD linked output power of >400 μW. The variations in output power and in peak wavelength are not more than 0.54% and 0.06%, respectively. The injection-locked SOA-FPLD link is insensitive to the temperature fluctuation within ±0.25 °C.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Stover and W. Steier, “Locking of a laser oscillator by light injection,” Appl. Phys. Lett. 8, 91–94 (1966).
    [CrossRef]
  2. A. Siegman, Lasers, (University Science, Mill Valley, Calif., 1986), Chap. 29.
  3. M. Spencer and W. Lamb, “Laser with a transmitting window,” Phys. Rev. A 5, 884–892 (1972).
    [CrossRef]
  4. S. Longhi, “Traveling and standing waves in a laser with an injected signal,” Phys. Rev. A 56, 1553–1563 (1997).
    [CrossRef]
  5. P. Even, K. A. Ameur, and G. Stephan, “Modeling of an injected gas laser,” Phys. Rev. A 55, 1441–1453 (1997).
    [CrossRef]
  6. J. Tredice, F. Arecchi, G. Lippi, and G. Puccioni, “Instabilities in a laser with an injected signal,” J. Opt. Soc. Am. B 2, 173–183 (1985).
    [CrossRef]
  7. W. W. Chow, “Theory of line narrowing and frequency selection in an injection locked laser,” IEEE J. Quantum Electron. 19, 243–249 (1983).
    [CrossRef]
  8. B. Feldman and M. Feld, “Laser-induced line-narrowing effects in a coupled Doppler-broadened transition. II. Standing-wave features,” Phys. Rev. A 5, 899–918 (1972).
    [CrossRef]
  9. G. Stephan, “Spectral properties of an injected laser,” Phys. Rev. A 58, 2467–2471 (1998).
    [CrossRef]
  10. J. Jones and P. Urquhart, “An injection-locked erbium fiber laser,” Opt. Commun. 76, 42–46 (1990).
    [CrossRef]
  11. L. W. Liou, M. Yu, T. Yoshino, and G. P. Agrawal, “Mutual injection locking of a fiber laser and a DFB semiconductor laser,” Electron. Lett. 31, 41–42 (1995).
    [CrossRef]
  12. P. A. Andrekson, N. A. Olsson, T. T. Ek, and M. A. Washington, “High power semiconductor laser injection-locking at 1.3 μm,” J. Lightwave Technol. 10, 903–907 (1992).
    [CrossRef]
  13. R. Goto, T. Goto, H. Kasuya, M. Mori, and K. Yamane, “Mutual injection locking between two DFB LDs which lase at frequencies separated by one Fabry-Perot mode-spacing,” Electron. Lett. 34, 1669–1670 (1998).
    [CrossRef]
  14. K. K. Chow and C. Shu, “Spectrally resolved analysis of fast tuning in single-mode pulses generated from mutually injection-seeded Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett. 12, 1444–1446 (2000).
    [CrossRef]
  15. X. Fang and D. N. Wang, “Mutual pulse injection seeding by the use of two Fabry-Perot laser diodes to produce wavelength-tunable optical short pulses,” IEEE Photon. Technol. Lett. 15, 855–857 (2003).
    [CrossRef]

2003 (1)

X. Fang and D. N. Wang, “Mutual pulse injection seeding by the use of two Fabry-Perot laser diodes to produce wavelength-tunable optical short pulses,” IEEE Photon. Technol. Lett. 15, 855–857 (2003).
[CrossRef]

2000 (1)

K. K. Chow and C. Shu, “Spectrally resolved analysis of fast tuning in single-mode pulses generated from mutually injection-seeded Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett. 12, 1444–1446 (2000).
[CrossRef]

1998 (2)

R. Goto, T. Goto, H. Kasuya, M. Mori, and K. Yamane, “Mutual injection locking between two DFB LDs which lase at frequencies separated by one Fabry-Perot mode-spacing,” Electron. Lett. 34, 1669–1670 (1998).
[CrossRef]

G. Stephan, “Spectral properties of an injected laser,” Phys. Rev. A 58, 2467–2471 (1998).
[CrossRef]

1997 (2)

S. Longhi, “Traveling and standing waves in a laser with an injected signal,” Phys. Rev. A 56, 1553–1563 (1997).
[CrossRef]

P. Even, K. A. Ameur, and G. Stephan, “Modeling of an injected gas laser,” Phys. Rev. A 55, 1441–1453 (1997).
[CrossRef]

1995 (1)

L. W. Liou, M. Yu, T. Yoshino, and G. P. Agrawal, “Mutual injection locking of a fiber laser and a DFB semiconductor laser,” Electron. Lett. 31, 41–42 (1995).
[CrossRef]

1992 (1)

P. A. Andrekson, N. A. Olsson, T. T. Ek, and M. A. Washington, “High power semiconductor laser injection-locking at 1.3 μm,” J. Lightwave Technol. 10, 903–907 (1992).
[CrossRef]

1990 (1)

J. Jones and P. Urquhart, “An injection-locked erbium fiber laser,” Opt. Commun. 76, 42–46 (1990).
[CrossRef]

1986 (1)

A. Siegman, Lasers, (University Science, Mill Valley, Calif., 1986), Chap. 29.

1985 (1)

1983 (1)

W. W. Chow, “Theory of line narrowing and frequency selection in an injection locked laser,” IEEE J. Quantum Electron. 19, 243–249 (1983).
[CrossRef]

1972 (2)

B. Feldman and M. Feld, “Laser-induced line-narrowing effects in a coupled Doppler-broadened transition. II. Standing-wave features,” Phys. Rev. A 5, 899–918 (1972).
[CrossRef]

M. Spencer and W. Lamb, “Laser with a transmitting window,” Phys. Rev. A 5, 884–892 (1972).
[CrossRef]

1966 (1)

H. Stover and W. Steier, “Locking of a laser oscillator by light injection,” Appl. Phys. Lett. 8, 91–94 (1966).
[CrossRef]

Agrawal, G. P.

L. W. Liou, M. Yu, T. Yoshino, and G. P. Agrawal, “Mutual injection locking of a fiber laser and a DFB semiconductor laser,” Electron. Lett. 31, 41–42 (1995).
[CrossRef]

Ameur, K. A.

P. Even, K. A. Ameur, and G. Stephan, “Modeling of an injected gas laser,” Phys. Rev. A 55, 1441–1453 (1997).
[CrossRef]

Andrekson, P. A.

P. A. Andrekson, N. A. Olsson, T. T. Ek, and M. A. Washington, “High power semiconductor laser injection-locking at 1.3 μm,” J. Lightwave Technol. 10, 903–907 (1992).
[CrossRef]

Arecchi, F.

Chow, K. K.

K. K. Chow and C. Shu, “Spectrally resolved analysis of fast tuning in single-mode pulses generated from mutually injection-seeded Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett. 12, 1444–1446 (2000).
[CrossRef]

Chow, W. W.

W. W. Chow, “Theory of line narrowing and frequency selection in an injection locked laser,” IEEE J. Quantum Electron. 19, 243–249 (1983).
[CrossRef]

Ek, T. T.

P. A. Andrekson, N. A. Olsson, T. T. Ek, and M. A. Washington, “High power semiconductor laser injection-locking at 1.3 μm,” J. Lightwave Technol. 10, 903–907 (1992).
[CrossRef]

Even, P.

P. Even, K. A. Ameur, and G. Stephan, “Modeling of an injected gas laser,” Phys. Rev. A 55, 1441–1453 (1997).
[CrossRef]

Fang, X.

X. Fang and D. N. Wang, “Mutual pulse injection seeding by the use of two Fabry-Perot laser diodes to produce wavelength-tunable optical short pulses,” IEEE Photon. Technol. Lett. 15, 855–857 (2003).
[CrossRef]

Feld, M.

B. Feldman and M. Feld, “Laser-induced line-narrowing effects in a coupled Doppler-broadened transition. II. Standing-wave features,” Phys. Rev. A 5, 899–918 (1972).
[CrossRef]

Feldman, B.

B. Feldman and M. Feld, “Laser-induced line-narrowing effects in a coupled Doppler-broadened transition. II. Standing-wave features,” Phys. Rev. A 5, 899–918 (1972).
[CrossRef]

Goto, R.

R. Goto, T. Goto, H. Kasuya, M. Mori, and K. Yamane, “Mutual injection locking between two DFB LDs which lase at frequencies separated by one Fabry-Perot mode-spacing,” Electron. Lett. 34, 1669–1670 (1998).
[CrossRef]

Goto, T.

R. Goto, T. Goto, H. Kasuya, M. Mori, and K. Yamane, “Mutual injection locking between two DFB LDs which lase at frequencies separated by one Fabry-Perot mode-spacing,” Electron. Lett. 34, 1669–1670 (1998).
[CrossRef]

Jones, J.

J. Jones and P. Urquhart, “An injection-locked erbium fiber laser,” Opt. Commun. 76, 42–46 (1990).
[CrossRef]

Kasuya, H.

R. Goto, T. Goto, H. Kasuya, M. Mori, and K. Yamane, “Mutual injection locking between two DFB LDs which lase at frequencies separated by one Fabry-Perot mode-spacing,” Electron. Lett. 34, 1669–1670 (1998).
[CrossRef]

Lamb, W.

M. Spencer and W. Lamb, “Laser with a transmitting window,” Phys. Rev. A 5, 884–892 (1972).
[CrossRef]

Liou, L. W.

L. W. Liou, M. Yu, T. Yoshino, and G. P. Agrawal, “Mutual injection locking of a fiber laser and a DFB semiconductor laser,” Electron. Lett. 31, 41–42 (1995).
[CrossRef]

Lippi, G.

Longhi, S.

S. Longhi, “Traveling and standing waves in a laser with an injected signal,” Phys. Rev. A 56, 1553–1563 (1997).
[CrossRef]

Mori, M.

R. Goto, T. Goto, H. Kasuya, M. Mori, and K. Yamane, “Mutual injection locking between two DFB LDs which lase at frequencies separated by one Fabry-Perot mode-spacing,” Electron. Lett. 34, 1669–1670 (1998).
[CrossRef]

Olsson, N. A.

P. A. Andrekson, N. A. Olsson, T. T. Ek, and M. A. Washington, “High power semiconductor laser injection-locking at 1.3 μm,” J. Lightwave Technol. 10, 903–907 (1992).
[CrossRef]

Puccioni, G.

Shu, C.

K. K. Chow and C. Shu, “Spectrally resolved analysis of fast tuning in single-mode pulses generated from mutually injection-seeded Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett. 12, 1444–1446 (2000).
[CrossRef]

Siegman, A.

A. Siegman, Lasers, (University Science, Mill Valley, Calif., 1986), Chap. 29.

Spencer, M.

M. Spencer and W. Lamb, “Laser with a transmitting window,” Phys. Rev. A 5, 884–892 (1972).
[CrossRef]

Steier, W.

H. Stover and W. Steier, “Locking of a laser oscillator by light injection,” Appl. Phys. Lett. 8, 91–94 (1966).
[CrossRef]

Stephan, G.

G. Stephan, “Spectral properties of an injected laser,” Phys. Rev. A 58, 2467–2471 (1998).
[CrossRef]

P. Even, K. A. Ameur, and G. Stephan, “Modeling of an injected gas laser,” Phys. Rev. A 55, 1441–1453 (1997).
[CrossRef]

Stover, H.

H. Stover and W. Steier, “Locking of a laser oscillator by light injection,” Appl. Phys. Lett. 8, 91–94 (1966).
[CrossRef]

Tredice, J.

Urquhart, P.

J. Jones and P. Urquhart, “An injection-locked erbium fiber laser,” Opt. Commun. 76, 42–46 (1990).
[CrossRef]

Wang, D. N.

X. Fang and D. N. Wang, “Mutual pulse injection seeding by the use of two Fabry-Perot laser diodes to produce wavelength-tunable optical short pulses,” IEEE Photon. Technol. Lett. 15, 855–857 (2003).
[CrossRef]

Washington, M. A.

P. A. Andrekson, N. A. Olsson, T. T. Ek, and M. A. Washington, “High power semiconductor laser injection-locking at 1.3 μm,” J. Lightwave Technol. 10, 903–907 (1992).
[CrossRef]

Yamane, K.

R. Goto, T. Goto, H. Kasuya, M. Mori, and K. Yamane, “Mutual injection locking between two DFB LDs which lase at frequencies separated by one Fabry-Perot mode-spacing,” Electron. Lett. 34, 1669–1670 (1998).
[CrossRef]

Yoshino, T.

L. W. Liou, M. Yu, T. Yoshino, and G. P. Agrawal, “Mutual injection locking of a fiber laser and a DFB semiconductor laser,” Electron. Lett. 31, 41–42 (1995).
[CrossRef]

Yu, M.

L. W. Liou, M. Yu, T. Yoshino, and G. P. Agrawal, “Mutual injection locking of a fiber laser and a DFB semiconductor laser,” Electron. Lett. 31, 41–42 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

H. Stover and W. Steier, “Locking of a laser oscillator by light injection,” Appl. Phys. Lett. 8, 91–94 (1966).
[CrossRef]

Electron. Lett. (2)

L. W. Liou, M. Yu, T. Yoshino, and G. P. Agrawal, “Mutual injection locking of a fiber laser and a DFB semiconductor laser,” Electron. Lett. 31, 41–42 (1995).
[CrossRef]

R. Goto, T. Goto, H. Kasuya, M. Mori, and K. Yamane, “Mutual injection locking between two DFB LDs which lase at frequencies separated by one Fabry-Perot mode-spacing,” Electron. Lett. 34, 1669–1670 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. W. Chow, “Theory of line narrowing and frequency selection in an injection locked laser,” IEEE J. Quantum Electron. 19, 243–249 (1983).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. K. Chow and C. Shu, “Spectrally resolved analysis of fast tuning in single-mode pulses generated from mutually injection-seeded Fabry-Perot laser diodes,” IEEE Photon. Technol. Lett. 12, 1444–1446 (2000).
[CrossRef]

X. Fang and D. N. Wang, “Mutual pulse injection seeding by the use of two Fabry-Perot laser diodes to produce wavelength-tunable optical short pulses,” IEEE Photon. Technol. Lett. 15, 855–857 (2003).
[CrossRef]

J. Lightwave Technol. (1)

P. A. Andrekson, N. A. Olsson, T. T. Ek, and M. A. Washington, “High power semiconductor laser injection-locking at 1.3 μm,” J. Lightwave Technol. 10, 903–907 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. Jones and P. Urquhart, “An injection-locked erbium fiber laser,” Opt. Commun. 76, 42–46 (1990).
[CrossRef]

Phys. Rev. A (5)

B. Feldman and M. Feld, “Laser-induced line-narrowing effects in a coupled Doppler-broadened transition. II. Standing-wave features,” Phys. Rev. A 5, 899–918 (1972).
[CrossRef]

G. Stephan, “Spectral properties of an injected laser,” Phys. Rev. A 58, 2467–2471 (1998).
[CrossRef]

M. Spencer and W. Lamb, “Laser with a transmitting window,” Phys. Rev. A 5, 884–892 (1972).
[CrossRef]

S. Longhi, “Traveling and standing waves in a laser with an injected signal,” Phys. Rev. A 56, 1553–1563 (1997).
[CrossRef]

P. Even, K. A. Ameur, and G. Stephan, “Modeling of an injected gas laser,” Phys. Rev. A 55, 1441–1453 (1997).
[CrossRef]

Other (1)

A. Siegman, Lasers, (University Science, Mill Valley, Calif., 1986), Chap. 29.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the injection-locked SOA-FPLD link: ISO, isolator; OSA, optical spectrum analyzer; PD, photodiode; other abbreviations defined in text.

Fig. 2
Fig. 2

Theoretically simulated linewidth at 3-dB decay as a function of effective reflectivity (R eff) and reflectivity change (ΔR) for four gain conditions.

Fig. 3
Fig. 3

Measured spectra of a free-running SOA and of an injection-locked SOA-FPLD link.

Fig. 4
Fig. 4

Lasing spectra of (a) a free-running SOA, (b) a free-running FPLD, (c) an optically bandpass filtered SOAFL, and (d) an injection-locked SOA-FPLD link.

Fig. 5
Fig. 5

Line shape and linewidth at rates of decay of 3, 10, and 20 dB of a SOA-FPLD link fitted by Gaussian and Lorentzian functions.

Fig. 6
Fig. 6

SMSR and linewidth of a SOA-FPLD link at several driven currents of a FPLD.

Fig. 7
Fig. 7

SNR and output power at several driven currents of a FPLD.

Fig. 8
Fig. 8

Lasing spectra of a SOA-FPLD link at three feedback powers of a FPLD.

Fig. 9
Fig. 9

Lasing spectra of a SOA-FPLD link at five temperatures of a FPLD.

Tables (1)

Tables Icon

Table 1 Comparisons of Output Performance of an FPLD and a SOA in Various Laser Geometries

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ddtE2 exp-iωt=½G2-Γ2E2 exp-iωt+½ρ3ξ3Γ3E3 exp-iωt-θ+G2hωnsp2πTR,
ddtE1 exp-iωt=½G1-Γ1E1 exp-iωt+½ρ3ξ3Γ3E3 exp-iωt-θ+G1hωnsp2πTR,
dIdt=ddtEE*=E ddtE*+E* ddtE
ddtI1=G1-Γ1I1+ρ1ξ1Γ1I1+G1hωnsp2πTR=G1-Γ1I1+G1hωnsp2πTR,
ddtI2=G2-Γ2I2+ρ2ξ2Γ2I2+G2hωnsp2πTR=G2-Γ2I2+G2hωnsp2πTR,
SMSR=I1I2=G1Γ1-G1×Γ2-G2G2=G1/1+I1/IS1Γ1-G1/1+I1/IS1×Γ2-G11+I1/IS2G1/1+I1/IS2,
I1I2=C1Γ2-C2Γ1Γ1=C11-C2Γ1/Γ2Γ1/Γ2=C11-C2 lnReff,1/lnReff,2lnReff,1/lnReff,2.
I1=I0T121-R1G12G11+4R1G1/1-R1G12sin2Δ2.
Δλ=λ022πnL1-Reff,1G1Reff,1G1=λ022πnL1-R1+ΔRG1R1+ΔRG1.

Metrics