Abstract

We report new results on acousto-optical tomography in phantom tissues using a frequency chirp modulation and a CCD camera. This technique allows quick recording of three-dimensional images of the optical contrast with a two-dimensional scan of the ultrasound source in a plane perpendicular to the ultrasonic path. The entire optical contrast along the ultrasonic path is concurrently obtained from the capture of a film sequence at a rate of 200 Hz. This technique reduces the acquisition time, and it enhances the axial resolution and thus the contrast, which are usually poor owing to the large volume of interaction of the ultrasound perturbation.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process Mag. 18(6), 57–75 (2001).
    [CrossRef]
  2. S. C. W. Hyde, N. P. Barry, J. C. Dainty, P. M. W. French, “High resolution depth resolved imaging through scattering media using time resolved holography,” Opt. Commun. 122, 111–116 (1996).
    [CrossRef]
  3. S. Lévêque, A. C. Boccara, M. Lebec, H. St-James, Ultrasonic tagging of photon paths in scattering media: parallel modulation processing, Opt. Lett. 24, 181–183 (1999).
    [CrossRef]
  4. J. Li, L. V. Wang, “Methods for parallel-detection-based ultrasound optical tomography,” Appl. Opt. 41, 2079–2084 (2002).
    [CrossRef] [PubMed]
  5. E. Granot, A. Lev, Z. Kotler, B. G. Sfez, “Detection of inhomogeneities with ultrasound tagging of light,” JOSA A 18, 1962–1967 (2001).
    [CrossRef] [PubMed]
  6. J. Selb, L. Pottier, A. C. Boccara, “Nonlinear effects in acousto-optic imaging,” Opt. Lett. 27, 918–920 (2002).
    [CrossRef]
  7. L. V. Wang, G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23, 975–977 (1998).
    [CrossRef]
  8. G. Yao, S. Jiao, L. V. Wang, “Frequency-swept ultrasound-modulated optical tomography in biological tissue by use of parallel detection,” Opt. Lett. 25, 734–736 (2000).
    [CrossRef]
  9. D. A. Boas, J. P. Culver, J. J. Stott, A. K. Dunn, “Three dimensional Monte-Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]

2002

2001

E. Granot, A. Lev, Z. Kotler, B. G. Sfez, “Detection of inhomogeneities with ultrasound tagging of light,” JOSA A 18, 1962–1967 (2001).
[CrossRef] [PubMed]

D. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process Mag. 18(6), 57–75 (2001).
[CrossRef]

2000

1999

1998

1996

S. C. W. Hyde, N. P. Barry, J. C. Dainty, P. M. W. French, “High resolution depth resolved imaging through scattering media using time resolved holography,” Opt. Commun. 122, 111–116 (1996).
[CrossRef]

Barry, N. P.

S. C. W. Hyde, N. P. Barry, J. C. Dainty, P. M. W. French, “High resolution depth resolved imaging through scattering media using time resolved holography,” Opt. Commun. 122, 111–116 (1996).
[CrossRef]

Boas, D.

D. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process Mag. 18(6), 57–75 (2001).
[CrossRef]

Boas, D. A.

Boccara, A. C.

Brooks, D. H.

D. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process Mag. 18(6), 57–75 (2001).
[CrossRef]

Culver, J. P.

Dainty, J. C.

S. C. W. Hyde, N. P. Barry, J. C. Dainty, P. M. W. French, “High resolution depth resolved imaging through scattering media using time resolved holography,” Opt. Commun. 122, 111–116 (1996).
[CrossRef]

DiMarzio, C. A.

D. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process Mag. 18(6), 57–75 (2001).
[CrossRef]

Dunn, A. K.

French, P. M. W.

S. C. W. Hyde, N. P. Barry, J. C. Dainty, P. M. W. French, “High resolution depth resolved imaging through scattering media using time resolved holography,” Opt. Commun. 122, 111–116 (1996).
[CrossRef]

Gaudette, R. J.

D. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process Mag. 18(6), 57–75 (2001).
[CrossRef]

Granot, E.

E. Granot, A. Lev, Z. Kotler, B. G. Sfez, “Detection of inhomogeneities with ultrasound tagging of light,” JOSA A 18, 1962–1967 (2001).
[CrossRef] [PubMed]

Hyde, S. C. W.

S. C. W. Hyde, N. P. Barry, J. C. Dainty, P. M. W. French, “High resolution depth resolved imaging through scattering media using time resolved holography,” Opt. Commun. 122, 111–116 (1996).
[CrossRef]

Jiao, S.

Kilmer, M.

D. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process Mag. 18(6), 57–75 (2001).
[CrossRef]

Kotler, Z.

E. Granot, A. Lev, Z. Kotler, B. G. Sfez, “Detection of inhomogeneities with ultrasound tagging of light,” JOSA A 18, 1962–1967 (2001).
[CrossRef] [PubMed]

Ku, G.

Lebec, M.

Lev, A.

E. Granot, A. Lev, Z. Kotler, B. G. Sfez, “Detection of inhomogeneities with ultrasound tagging of light,” JOSA A 18, 1962–1967 (2001).
[CrossRef] [PubMed]

Lévêque, S.

Li, J.

Miller, E. L.

D. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process Mag. 18(6), 57–75 (2001).
[CrossRef]

Pottier, L.

Selb, J.

Sfez, B. G.

E. Granot, A. Lev, Z. Kotler, B. G. Sfez, “Detection of inhomogeneities with ultrasound tagging of light,” JOSA A 18, 1962–1967 (2001).
[CrossRef] [PubMed]

St-James, H.

Stott, J. J.

Wang, L. V.

Yao, G.

Zhang, Q.

D. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process Mag. 18(6), 57–75 (2001).
[CrossRef]

Appl. Opt.

IEEE Signal Process Mag.

D. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process Mag. 18(6), 57–75 (2001).
[CrossRef]

JOSA A

E. Granot, A. Lev, Z. Kotler, B. G. Sfez, “Detection of inhomogeneities with ultrasound tagging of light,” JOSA A 18, 1962–1967 (2001).
[CrossRef] [PubMed]

Opt. Commun.

S. C. W. Hyde, N. P. Barry, J. C. Dainty, P. M. W. French, “High resolution depth resolved imaging through scattering media using time resolved holography,” Opt. Commun. 122, 111–116 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup configuration. The ultrasonic beam propagates along the z direction, whereas the laser beam enters along the x coordinate. CCD camera is parallel to the (y, z) plane.

Fig. 2
Fig. 2

(a) Optical contrast for a single inclusion along the US path z. (b) Spatial response of the optical contrast outside of the inclusion.

Fig. 3
Fig. 3

Two-dimensional image of the inclusion in the (x, z) plane, z being the direction of the US beam.

Fig. 4
Fig. 4

Optical contrast of two inclusions (ϕ = 5 mm, separation of the centers = 8.5 mm), along the US. Actual dimensions may slightly vary because the sample is compressed between the exit windows.

Fig. 5
Fig. 5

Two-dimensional image of the two inclusions in the (x, z) plane, z being the direction of the US beam.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Aacx, y, z, t=aacx, y, zAUS cos2πf2+btt-2π f2+btVUSz-zorigin,
cos2πf1+btt+ϕx, y, z, tcos2πf2+btt-2π f2+btVUSz-zorig.
Aoptx, y, zaacx, y, zAUS cos2πf1-f2+bz-zorigVUSt+2πf2z-zorigVUS+ϕ.

Metrics