Abstract

A novel method is presented for the localization of multipoint loss-inducing perturbations in a distributed fiber-optic sensor. The proposed simple technique is based on measurement of the transmitted and the Rayleigh-backscattered powers of an unmodulated light launched into a sensing fiber. The positions of consecutive perturbations are determined by measuring the slopes of the dependence of normalized Rayleigh-backscattering power versus the square of normalized transmitted power. It is shown that these slopes uniquely depend on the positions of the disturbances along the test fiber. The method allows localization of any number of the perturbations that appear one after another at different positions along the test fiber without ambiguity. Good agreement is obtained between calculated and experimentally measured slopes for a loss that was consecutively induced near the source and remote ends of 2.844-km-long fiber.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Dakin, “Distributed optical fiber sensors,” in Fiber Optic Smart Structures, E. Udd, ed. (Wiley, New York, 1995).
  2. A. Hartog, “Distributed fiber-optic sensors: principles and applications,” in Optical Fiber Sensor Technology. Advanced Applications—Bragg Gratings and Distributed Sensors, K. T. V. Grattan, B. T. Meggitt, eds. (Kluwer Academic, Boston, 2000).
    [CrossRef]
  3. D. A. Nolan, P. E. Blaszyk, E. Udd, “Optical fibers, fiber optic sensors,” in An Introduction for Engineers and Scientists (Wiley, New York, 1991).
  4. G. L. Mitchell, “Intensity-based and Fabry-Perot interferometer sensors,” in Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1991).
  5. V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, P. L. Swart, “Transmission/reflection analysis for distributed optical fiber loss sensor interrogation,” Electron. Lett. 38, 117–118 (2002).
    [CrossRef]
  6. V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, P. L. Swart, “Alarm-condition detection and localization using Rayleigh scattering for a fiber-optic bending sensor with an unmodulated light source,” Opt. Commun. 205, 1–3, 37–41 (2002).
    [CrossRef]
  7. P. Gysel, R. H. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8, 561–567 (1990).
    [CrossRef]
  8. S.-K. Liaw, S.-L. Tzeng, Y.-J. Hung, “Rayleigh backscattering induced power penalty on bidirectional wavelength-reuse fiber systems,” Opt. Commun. 188, 63–67 (2000).
    [CrossRef]
  9. E. Brinkmeyer, “Backscattering in single-mode fibers,” Electron. Lett. 16, 329–330 (1980).
    [CrossRef]
  10. J. Beller, “OTDRs and backscatter measurements,” in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1998).
  11. V. V. Spirin, R. M. Lopez, M. G. Shlyagin, S. V. Miridonov, I. Marquez, E. A. Kuzin, G. Beltran-Perez, P. L. Swart, “Fiber optic sensor for hydrocarbon leak detection and localization based on transmission/reflection analysis,” in Smart Structures and Materials 2002: Smart Sensor Technology and Measurement Systems, D. Inaudi, E. Udd, eds., Proc. SPIE4694, 341–348 (2002).
    [CrossRef]

2002 (2)

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, P. L. Swart, “Transmission/reflection analysis for distributed optical fiber loss sensor interrogation,” Electron. Lett. 38, 117–118 (2002).
[CrossRef]

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, P. L. Swart, “Alarm-condition detection and localization using Rayleigh scattering for a fiber-optic bending sensor with an unmodulated light source,” Opt. Commun. 205, 1–3, 37–41 (2002).
[CrossRef]

2000 (1)

S.-K. Liaw, S.-L. Tzeng, Y.-J. Hung, “Rayleigh backscattering induced power penalty on bidirectional wavelength-reuse fiber systems,” Opt. Commun. 188, 63–67 (2000).
[CrossRef]

1990 (1)

P. Gysel, R. H. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8, 561–567 (1990).
[CrossRef]

1980 (1)

E. Brinkmeyer, “Backscattering in single-mode fibers,” Electron. Lett. 16, 329–330 (1980).
[CrossRef]

Beller, J.

J. Beller, “OTDRs and backscatter measurements,” in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1998).

Beltran-Perez, G.

V. V. Spirin, R. M. Lopez, M. G. Shlyagin, S. V. Miridonov, I. Marquez, E. A. Kuzin, G. Beltran-Perez, P. L. Swart, “Fiber optic sensor for hydrocarbon leak detection and localization based on transmission/reflection analysis,” in Smart Structures and Materials 2002: Smart Sensor Technology and Measurement Systems, D. Inaudi, E. Udd, eds., Proc. SPIE4694, 341–348 (2002).
[CrossRef]

Blaszyk, P. E.

D. A. Nolan, P. E. Blaszyk, E. Udd, “Optical fibers, fiber optic sensors,” in An Introduction for Engineers and Scientists (Wiley, New York, 1991).

Brinkmeyer, E.

E. Brinkmeyer, “Backscattering in single-mode fibers,” Electron. Lett. 16, 329–330 (1980).
[CrossRef]

Dakin, J. P.

J. P. Dakin, “Distributed optical fiber sensors,” in Fiber Optic Smart Structures, E. Udd, ed. (Wiley, New York, 1995).

Gysel, P.

P. Gysel, R. H. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8, 561–567 (1990).
[CrossRef]

Hartog, A.

A. Hartog, “Distributed fiber-optic sensors: principles and applications,” in Optical Fiber Sensor Technology. Advanced Applications—Bragg Gratings and Distributed Sensors, K. T. V. Grattan, B. T. Meggitt, eds. (Kluwer Academic, Boston, 2000).
[CrossRef]

Hung, Y.-J.

S.-K. Liaw, S.-L. Tzeng, Y.-J. Hung, “Rayleigh backscattering induced power penalty on bidirectional wavelength-reuse fiber systems,” Opt. Commun. 188, 63–67 (2000).
[CrossRef]

Kuzin, E. A.

V. V. Spirin, R. M. Lopez, M. G. Shlyagin, S. V. Miridonov, I. Marquez, E. A. Kuzin, G. Beltran-Perez, P. L. Swart, “Fiber optic sensor for hydrocarbon leak detection and localization based on transmission/reflection analysis,” in Smart Structures and Materials 2002: Smart Sensor Technology and Measurement Systems, D. Inaudi, E. Udd, eds., Proc. SPIE4694, 341–348 (2002).
[CrossRef]

Liaw, S.-K.

S.-K. Liaw, S.-L. Tzeng, Y.-J. Hung, “Rayleigh backscattering induced power penalty on bidirectional wavelength-reuse fiber systems,” Opt. Commun. 188, 63–67 (2000).
[CrossRef]

Lopez, R. M.

V. V. Spirin, R. M. Lopez, M. G. Shlyagin, S. V. Miridonov, I. Marquez, E. A. Kuzin, G. Beltran-Perez, P. L. Swart, “Fiber optic sensor for hydrocarbon leak detection and localization based on transmission/reflection analysis,” in Smart Structures and Materials 2002: Smart Sensor Technology and Measurement Systems, D. Inaudi, E. Udd, eds., Proc. SPIE4694, 341–348 (2002).
[CrossRef]

Marquez, I.

V. V. Spirin, R. M. Lopez, M. G. Shlyagin, S. V. Miridonov, I. Marquez, E. A. Kuzin, G. Beltran-Perez, P. L. Swart, “Fiber optic sensor for hydrocarbon leak detection and localization based on transmission/reflection analysis,” in Smart Structures and Materials 2002: Smart Sensor Technology and Measurement Systems, D. Inaudi, E. Udd, eds., Proc. SPIE4694, 341–348 (2002).
[CrossRef]

Miridonov, S. V.

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, P. L. Swart, “Alarm-condition detection and localization using Rayleigh scattering for a fiber-optic bending sensor with an unmodulated light source,” Opt. Commun. 205, 1–3, 37–41 (2002).
[CrossRef]

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, P. L. Swart, “Transmission/reflection analysis for distributed optical fiber loss sensor interrogation,” Electron. Lett. 38, 117–118 (2002).
[CrossRef]

V. V. Spirin, R. M. Lopez, M. G. Shlyagin, S. V. Miridonov, I. Marquez, E. A. Kuzin, G. Beltran-Perez, P. L. Swart, “Fiber optic sensor for hydrocarbon leak detection and localization based on transmission/reflection analysis,” in Smart Structures and Materials 2002: Smart Sensor Technology and Measurement Systems, D. Inaudi, E. Udd, eds., Proc. SPIE4694, 341–348 (2002).
[CrossRef]

Mitchell, G. L.

G. L. Mitchell, “Intensity-based and Fabry-Perot interferometer sensors,” in Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1991).

Nolan, D. A.

D. A. Nolan, P. E. Blaszyk, E. Udd, “Optical fibers, fiber optic sensors,” in An Introduction for Engineers and Scientists (Wiley, New York, 1991).

Shlyagin, M. G.

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, P. L. Swart, “Transmission/reflection analysis for distributed optical fiber loss sensor interrogation,” Electron. Lett. 38, 117–118 (2002).
[CrossRef]

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, P. L. Swart, “Alarm-condition detection and localization using Rayleigh scattering for a fiber-optic bending sensor with an unmodulated light source,” Opt. Commun. 205, 1–3, 37–41 (2002).
[CrossRef]

V. V. Spirin, R. M. Lopez, M. G. Shlyagin, S. V. Miridonov, I. Marquez, E. A. Kuzin, G. Beltran-Perez, P. L. Swart, “Fiber optic sensor for hydrocarbon leak detection and localization based on transmission/reflection analysis,” in Smart Structures and Materials 2002: Smart Sensor Technology and Measurement Systems, D. Inaudi, E. Udd, eds., Proc. SPIE4694, 341–348 (2002).
[CrossRef]

Spirin, V. V.

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, P. L. Swart, “Alarm-condition detection and localization using Rayleigh scattering for a fiber-optic bending sensor with an unmodulated light source,” Opt. Commun. 205, 1–3, 37–41 (2002).
[CrossRef]

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, P. L. Swart, “Transmission/reflection analysis for distributed optical fiber loss sensor interrogation,” Electron. Lett. 38, 117–118 (2002).
[CrossRef]

V. V. Spirin, R. M. Lopez, M. G. Shlyagin, S. V. Miridonov, I. Marquez, E. A. Kuzin, G. Beltran-Perez, P. L. Swart, “Fiber optic sensor for hydrocarbon leak detection and localization based on transmission/reflection analysis,” in Smart Structures and Materials 2002: Smart Sensor Technology and Measurement Systems, D. Inaudi, E. Udd, eds., Proc. SPIE4694, 341–348 (2002).
[CrossRef]

Staubli, R. H.

P. Gysel, R. H. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8, 561–567 (1990).
[CrossRef]

Swart, P. L.

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, P. L. Swart, “Alarm-condition detection and localization using Rayleigh scattering for a fiber-optic bending sensor with an unmodulated light source,” Opt. Commun. 205, 1–3, 37–41 (2002).
[CrossRef]

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, P. L. Swart, “Transmission/reflection analysis for distributed optical fiber loss sensor interrogation,” Electron. Lett. 38, 117–118 (2002).
[CrossRef]

V. V. Spirin, R. M. Lopez, M. G. Shlyagin, S. V. Miridonov, I. Marquez, E. A. Kuzin, G. Beltran-Perez, P. L. Swart, “Fiber optic sensor for hydrocarbon leak detection and localization based on transmission/reflection analysis,” in Smart Structures and Materials 2002: Smart Sensor Technology and Measurement Systems, D. Inaudi, E. Udd, eds., Proc. SPIE4694, 341–348 (2002).
[CrossRef]

Tzeng, S.-L.

S.-K. Liaw, S.-L. Tzeng, Y.-J. Hung, “Rayleigh backscattering induced power penalty on bidirectional wavelength-reuse fiber systems,” Opt. Commun. 188, 63–67 (2000).
[CrossRef]

Udd, E.

D. A. Nolan, P. E. Blaszyk, E. Udd, “Optical fibers, fiber optic sensors,” in An Introduction for Engineers and Scientists (Wiley, New York, 1991).

Electron. Lett. (2)

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, P. L. Swart, “Transmission/reflection analysis for distributed optical fiber loss sensor interrogation,” Electron. Lett. 38, 117–118 (2002).
[CrossRef]

E. Brinkmeyer, “Backscattering in single-mode fibers,” Electron. Lett. 16, 329–330 (1980).
[CrossRef]

J. Lightwave Technol. (1)

P. Gysel, R. H. Staubli, “Statistical properties of Rayleigh backscattering in single-mode fibers,” J. Lightwave Technol. 8, 561–567 (1990).
[CrossRef]

Opt. Commun. (2)

S.-K. Liaw, S.-L. Tzeng, Y.-J. Hung, “Rayleigh backscattering induced power penalty on bidirectional wavelength-reuse fiber systems,” Opt. Commun. 188, 63–67 (2000).
[CrossRef]

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, P. L. Swart, “Alarm-condition detection and localization using Rayleigh scattering for a fiber-optic bending sensor with an unmodulated light source,” Opt. Commun. 205, 1–3, 37–41 (2002).
[CrossRef]

Other (6)

J. P. Dakin, “Distributed optical fiber sensors,” in Fiber Optic Smart Structures, E. Udd, ed. (Wiley, New York, 1995).

A. Hartog, “Distributed fiber-optic sensors: principles and applications,” in Optical Fiber Sensor Technology. Advanced Applications—Bragg Gratings and Distributed Sensors, K. T. V. Grattan, B. T. Meggitt, eds. (Kluwer Academic, Boston, 2000).
[CrossRef]

D. A. Nolan, P. E. Blaszyk, E. Udd, “Optical fibers, fiber optic sensors,” in An Introduction for Engineers and Scientists (Wiley, New York, 1991).

G. L. Mitchell, “Intensity-based and Fabry-Perot interferometer sensors,” in Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1991).

J. Beller, “OTDRs and backscatter measurements,” in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1998).

V. V. Spirin, R. M. Lopez, M. G. Shlyagin, S. V. Miridonov, I. Marquez, E. A. Kuzin, G. Beltran-Perez, P. L. Swart, “Fiber optic sensor for hydrocarbon leak detection and localization based on transmission/reflection analysis,” in Smart Structures and Materials 2002: Smart Sensor Technology and Measurement Systems, D. Inaudi, E. Udd, eds., Proc. SPIE4694, 341–348 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Test fiber configuration for single perturbation: t 1, transmission of the loss-inducing segment; r 1, r 2, reflections from source and remote ends.

Fig. 2
Fig. 2

Relations between normalized Rayleigh-backscattered power and the square of normalized transmitted power when additional losses occur at distances, l 1,n = nΔ L, from the source end of the test fiber, where n = 0, 1, …, 10 and the interval between bending locations, ΔL = 284.4 m: ○, △, experimental results; solid lines, theoretical dependencies.

Fig. 3
Fig. 3

Schematic diagram of the TRA fiber-optic sensor.

Fig. 4
Fig. 4

Relative localization error versus excess loss for the TRA method.

Fig. 5
Fig. 5

Test fiber configuration for multipoint perturbations: t 1 + t n , transmission of initially disturbed loss-inducing segments; t x , transmission of the currently disturbed segment; r 1, r 2, reflections from source and remote ends.

Fig. 6
Fig. 6

Preliminary localization of the (n + 1)th perturbation with the helper function F(k, n).

Fig. 7
Fig. 7

Relations between normalized Rayleigh-backscattered power and the square of the normalized transmitted power for the bending losses consequently induced near the remote and source ends of the test fiber.

Fig. 8
Fig. 8

Relations between normalized Rayleigh-backscattered power and the square of the normalized transmitted power for two perturbations, A + D, synchronously and, A and D, independently induced near the remote and source ends of the test fiber.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

RδL=Sαs/2α1-exp-2αδL,
S=bn12-n22/n12,
Tnorm2=Sα+r1Rnorm-1-RnormSα-r2exp-2αL+Sα exp-2αl1Sαexp-2αl1-exp-2αL+r2 exp-2αL,
Tnorm=TTmax=t1,
Rnorm=RRmax=Sα+r1-Sα-r2t12 exp-2αL-Sα1-t12exp-2αl1Sα+r1-Sα-r2exp-2αL,
Tmax=exp-αL,
Rmax=Sα+r1-Sα-r2exp-2αL.
RnormTnorm2=Sαexp-2αl1-exp-2αL+r2 exp-2αLSα+r1-Sα-r2exp-2αL.
l1=12αlnSαSα+r1RTnorm2+r2-Sαexp-2αLRTnorm2-1.
RnormTnorm2=1Rmaxj=0n tj2Sαj=0k tj2exp-2αlx-exp-2αlk+1+Sαi=k+1nexp-2αli-exp-2αli+1j=0i tj2+TL2r2j=0n tj2,
Fk, n=1Rmaxj=0n tj2Sαi=knexp-2αli-exp-2αli+1j=0i tj2+TL2r2j=0n tj2.
Fk*+1, n<RnormTnorm2<Fk*, n,
lx=12αlnSαRnormTnorm2-Fk*+1, n Rmaxj=k+1n tj2+Sα exp-2αlk*+1.
Rnorm=R1+R2+R3Rmax,
R1=r1+Sαi=0k-1Tli21-exp-2αli+1-lij=0i tj2.
R2=Sαj=0k tj2Tlk21-exp-2αlx-lk+Tlx21-exp-2αlk+1-lxtx2,
R3=tx2Sαi=k+1n Tli21-exp-2αli+1-li×j=0i tj2+TL2r2j=0n tj2,
Tnorm2=tx2j=1n tj2.
Tnorm2=tx2j=1n tj2,
RnormTnorm2=1RmaxR1Tnorm2+R2Tnorm2+R3Tnorm2= 1Rmaxj=0n tj2Sαj=0k tj2exp-2αlx-exp-2αlk+1+Sαi=k+1nexp-2αli-exp-2αli+1j=0i tj2+TL2r2j=0n tj2,

Metrics