Abstract

The spatially resolved refractometer is an aberrometer used to measure the wave-front aberrations of the human eye. In its original form and the new configuration that we report, it uses the patient’s perception in a psychophysical task to evaluate the wave-front errors at a variable number of loci (typically 40 or 160) across the cornea. This configuration includes pupil tracking and the ability to choose the measurement loci in software. An automated configuration that does not require patient input is also described.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Webb, C. M. Penney, K. P. Thompson, “Measurement of ocular wavefront distortion with a spatially resolved refractometer,” Appl. Opt. 31, 3678–3686 (1992).
    [CrossRef] [PubMed]
  2. J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
    [CrossRef]
  3. F. Daxecker, “Christoph Scheiner’s eye studies,” Doc. Ophthalmol. 81(1), 27–35 (1992).
    [CrossRef]
  4. A. Ivanoff, “About spherical aberration of the eye,” J. Opt. Soc. Am. 46, 901–904 (1956).
    [CrossRef] [PubMed]
  5. M. S. Smirnov, “Measurement of wave aberration in the human eye,” Biophysics (USSR) 6, 52–65 (1961).
  6. H. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977).
    [CrossRef] [PubMed]
  7. G. Walsh, W. Charman, H. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984).
    [CrossRef] [PubMed]
  8. J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  9. R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
    [CrossRef]
  10. W. N. Charman, “Wavefront aberration of the eye: a review,” Optom. Vision Sci. 68, 574–583 (1991).
    [CrossRef]
  11. P. M. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt. 6, 200–204 (2001).
    [CrossRef] [PubMed]
  12. D. A. Atchison, A. Bradley, L. N. Thibos, G. Smith, “Useful variations of the Badal optometer,” Optom. Vision Sci. 72, 279–284 (1995).
    [CrossRef]
  13. Gilway Technical Lamp, 55 Commerce Way, Woburn, mass. 01801, Megabright green GaN LED E903; www.gilway.com .
  14. Lumileds, Lighting, LLC, 370 West Trimble Rd., San Jose, Calif. 95131, LXHL-BW01 530 nm; www.lumileds.com .
  15. M. Toyoda, H. Takami, K. Araki, T. Aruga, “Characteristics measurement of avalanche photo-diode quadrant detector for dim light position sensing,” Rev. Laser Eng. 21, 392–398 (1993).
    [CrossRef]
  16. E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, the spatially resolved refractometer, and the Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
    [CrossRef]
  17. S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
    [CrossRef]
  18. J. S. McLellan, S. Marcos, P. M. Prieto, S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature (London) 417, 174–176 (2002).
    [CrossRef]

2002 (1)

J. S. McLellan, S. Marcos, P. M. Prieto, S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature (London) 417, 174–176 (2002).
[CrossRef]

2001 (2)

P. M. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt. 6, 200–204 (2001).
[CrossRef] [PubMed]

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, the spatially resolved refractometer, and the Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

1999 (1)

S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

1998 (1)

1997 (1)

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

1995 (1)

D. A. Atchison, A. Bradley, L. N. Thibos, G. Smith, “Useful variations of the Badal optometer,” Optom. Vision Sci. 72, 279–284 (1995).
[CrossRef]

1994 (1)

1993 (1)

M. Toyoda, H. Takami, K. Araki, T. Aruga, “Characteristics measurement of avalanche photo-diode quadrant detector for dim light position sensing,” Rev. Laser Eng. 21, 392–398 (1993).
[CrossRef]

1992 (2)

1991 (1)

W. N. Charman, “Wavefront aberration of the eye: a review,” Optom. Vision Sci. 68, 574–583 (1991).
[CrossRef]

1984 (1)

1977 (1)

1961 (1)

M. S. Smirnov, “Measurement of wave aberration in the human eye,” Biophysics (USSR) 6, 52–65 (1961).

1956 (1)

Araki, K.

M. Toyoda, H. Takami, K. Araki, T. Aruga, “Characteristics measurement of avalanche photo-diode quadrant detector for dim light position sensing,” Rev. Laser Eng. 21, 392–398 (1993).
[CrossRef]

Aruga, T.

M. Toyoda, H. Takami, K. Araki, T. Aruga, “Characteristics measurement of avalanche photo-diode quadrant detector for dim light position sensing,” Rev. Laser Eng. 21, 392–398 (1993).
[CrossRef]

Atchison, D. A.

D. A. Atchison, A. Bradley, L. N. Thibos, G. Smith, “Useful variations of the Badal optometer,” Optom. Vision Sci. 72, 279–284 (1995).
[CrossRef]

Bille, J. F.

Bradley, A.

D. A. Atchison, A. Bradley, L. N. Thibos, G. Smith, “Useful variations of the Badal optometer,” Optom. Vision Sci. 72, 279–284 (1995).
[CrossRef]

Burns, S. A.

J. S. McLellan, S. Marcos, P. M. Prieto, S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature (London) 417, 174–176 (2002).
[CrossRef]

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, the spatially resolved refractometer, and the Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

Charman, W.

Charman, W. N.

W. N. Charman, “Wavefront aberration of the eye: a review,” Optom. Vision Sci. 68, 574–583 (1991).
[CrossRef]

Daxecker, F.

F. Daxecker, “Christoph Scheiner’s eye studies,” Doc. Ophthalmol. 81(1), 27–35 (1992).
[CrossRef]

Goelz, S.

Grimm, B.

He, J. C.

Howland, B.

Howland, H.

Ivanoff, A.

Kaemmerer, M.

P. M. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt. 6, 200–204 (2001).
[CrossRef] [PubMed]

Krinke, H. E.

P. M. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt. 6, 200–204 (2001).
[CrossRef] [PubMed]

Liang, J.

Losada, M. A.

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

Marcos, S.

J. S. McLellan, S. Marcos, P. M. Prieto, S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature (London) 417, 174–176 (2002).
[CrossRef]

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, the spatially resolved refractometer, and the Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

McLellan, J. S.

J. S. McLellan, S. Marcos, P. M. Prieto, S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature (London) 417, 174–176 (2002).
[CrossRef]

Mierdel, P. M.

P. M. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt. 6, 200–204 (2001).
[CrossRef] [PubMed]

Moreno-Barriuso, E.

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, the spatially resolved refractometer, and the Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

Moreno-Barriusop, E.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

Mrochen, M.

P. M. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt. 6, 200–204 (2001).
[CrossRef] [PubMed]

Navarro, R.

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, the spatially resolved refractometer, and the Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

Penney, C. M.

Prieto, P. M.

J. S. McLellan, S. Marcos, P. M. Prieto, S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature (London) 417, 174–176 (2002).
[CrossRef]

Seiler, T.

P. M. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt. 6, 200–204 (2001).
[CrossRef] [PubMed]

Smirnov, M. S.

M. S. Smirnov, “Measurement of wave aberration in the human eye,” Biophysics (USSR) 6, 52–65 (1961).

Smith, G.

D. A. Atchison, A. Bradley, L. N. Thibos, G. Smith, “Useful variations of the Badal optometer,” Optom. Vision Sci. 72, 279–284 (1995).
[CrossRef]

Takami, H.

M. Toyoda, H. Takami, K. Araki, T. Aruga, “Characteristics measurement of avalanche photo-diode quadrant detector for dim light position sensing,” Rev. Laser Eng. 21, 392–398 (1993).
[CrossRef]

Thibos, L. N.

D. A. Atchison, A. Bradley, L. N. Thibos, G. Smith, “Useful variations of the Badal optometer,” Optom. Vision Sci. 72, 279–284 (1995).
[CrossRef]

Thompson, K. P.

Toyoda, M.

M. Toyoda, H. Takami, K. Araki, T. Aruga, “Characteristics measurement of avalanche photo-diode quadrant detector for dim light position sensing,” Rev. Laser Eng. 21, 392–398 (1993).
[CrossRef]

Walsh, G.

Webb, R. H.

Appl. Opt. (1)

Biophysics (USSR) (1)

M. S. Smirnov, “Measurement of wave aberration in the human eye,” Biophysics (USSR) 6, 52–65 (1961).

Doc. Ophthalmol. (1)

F. Daxecker, “Christoph Scheiner’s eye studies,” Doc. Ophthalmol. 81(1), 27–35 (1992).
[CrossRef]

J. Biomed. Opt. (1)

P. M. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt. 6, 200–204 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

Nature (London) (1)

J. S. McLellan, S. Marcos, P. M. Prieto, S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature (London) 417, 174–176 (2002).
[CrossRef]

Optom. Vision Sci. (4)

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, the spatially resolved refractometer, and the Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

D. A. Atchison, A. Bradley, L. N. Thibos, G. Smith, “Useful variations of the Badal optometer,” Optom. Vision Sci. 72, 279–284 (1995).
[CrossRef]

R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997).
[CrossRef]

W. N. Charman, “Wavefront aberration of the eye: a review,” Optom. Vision Sci. 68, 574–583 (1991).
[CrossRef]

Rev. Laser Eng. (1)

M. Toyoda, H. Takami, K. Araki, T. Aruga, “Characteristics measurement of avalanche photo-diode quadrant detector for dim light position sensing,” Rev. Laser Eng. 21, 392–398 (1993).
[CrossRef]

Vision Res. (1)

S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999).
[CrossRef]

Other (2)

Gilway Technical Lamp, 55 Commerce Way, Woburn, mass. 01801, Megabright green GaN LED E903; www.gilway.com .

Lumileds, Lighting, LLC, 370 West Trimble Rd., San Jose, Calif. 95131, LXHL-BW01 530 nm; www.lumileds.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Parallel light (a plane-wave front) passing through an off-center subaperture will form a second image on the retina if the eye is myopic, as shown here.

Fig. 2
Fig. 2

Tilting the incident light through an angle α, can make the two retinal images coincide. Then a measurement of α (an external angle) is a measurement of the wave-front slope at the subaperture.

Fig. 3
Fig. 3

Overview of the SRR, showing foci at the corneal conjugate planes. Both subapertures move on the same CRT to track the eye, but these are shown as two CRTs here for clarity. The reference subaperture, usually in the center of the cornea, is formed on the CRT as a bright spot. The reference pattern is imposed on this light by a fixed mask—here shown as a small aperture. The test subaperture is formed at another location on the CRT, and a pattern for retinal viewing is imposed on it by a spatial light modulator (SLM).

Fig. 4
Fig. 4

Same layout as in Fig. 3, but now the conjugate planes of the retina are shown. The two masks are separate, as shown here, but there is actually only one CRT.

Fig. 5
Fig. 5

Typical reference pattern. The letters help to hold the eye’s focus, although we usually dilate the eye anyway.

Fig. 6
Fig. 6

Eight steps to process the image of the cornea for tracking.

Fig. 7
Fig. 7

Optical train can be moved to bring the retinal image to the ammetropic retina.

Fig. 8
Fig. 8

Time-domain multiplexed version.

Fig. 9
Fig. 9

Automatic variant. One of the galvanometer (pairs), G1, is imaged at the cornea, the other at the retina. The quadrant detector is also imaged at the retina, so its signal drives the retinal position of the laser spot to the null where the centroid of the image of the spot is centered on the detector. The beam expander sets the sampling size at the cornea and can adjust retinal focus to compensate ammetropia.

Fig. 10
Fig. 10

SRR screen shows the eye’s positioning and the tracking image, the placement of the subapertures, and indicates which of these have been successfully used. (In this picture the labels indicate color.) Various control parameters are also shown.

Fig. 11
Fig. 11

Calibration against trial lenses. Unit 003 performance after calibration.

Fig. 12
Fig. 12

Correlation of measured (MR) sphere equivalent versus patient manifest refraction for 794 eyes.

Fig. 13
Fig. 13

Reproducibility of wave-front measurements.

Tables (2)

Tables Icon

Table 1 Raw Measurements of Trial Lenses

Tables Icon

Table 2 Reduction of the Data as Derived Surgical Treatment Settings from Wave-Front Data

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R0C0/fe=R2C1/f3.
αf3>C1.

Metrics