Abstract

The characteristics of a few experimental near-field optical microscopes, located in different laboratories, have been compared on the basis of their ability to image a well-defined submicrometer test object.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ohtsu, H. Hori, “Basic principles to nano-fabrication and nano-photonics,” in Near-Field Nano-Optics (Kluwer Academic/Plenum, New York, 1999).
    [CrossRef]
  2. D. Courjon, C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989–1028 (1994).
    [CrossRef]
  3. R. Micheletto, H. Fukuda, M. Ohtsu, “A simple method for the production of a two-dimensional ordered array of small latex particles,” Langmuir 11, 44–47 (1995).
    [CrossRef]
  4. J. Salvi, D. Courjon, “Resonant optical cavity used as a nonradiating source for optical near-field microscopy,” Opt. Lett. 24, 1811–1813 (1999).
    [CrossRef]
  5. J. Salvi, “Mise en oeuvre d’un résonateur optique’ en microscopie en champ proche afin d’augmenter les résolutions latérales et le rapport signal sur bruit,” Ph.D. thesis (Université de Franche-Comté, Besançon, France, 2000).
  6. C. Vannier, C. Bainier, D. Courjon, “Isotropic incoherent scanning tunneling optical microscope (I2 STOM),” Optics Commun. 175, 83–88 (2000).
    [CrossRef]
  7. C. Thiébaud, “Apport de l’inspection haute résolution à l’étude de matériaux ferroélectriques en couches minces. Activité électro-optique champ lointain d’un fluide électrorhéologique,” Ph.D. thesis (Université de Franche-Comté, Besançon, France, 2001).
  8. Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
    [CrossRef]
  9. S. Grésillon, S. Ducourtieux, A. Lahrech, L. Aigouy, J. C. Rivoal, A. C. Boccara, “Nanometer scale apertureless near field microscopy,” Appl. Surf. Sci. 164, 118–123 (2000).
    [CrossRef]
  10. L. Aigouy, A. Lahrech, S. Grésillon, H. Cory, A.-C. Boccara, J. C. Rivoal, “Polarization effects in apertureless scanning near-field optical microscopy: an experimental study,” Opt. Lett. 24, 187–189 (1999).
    [CrossRef]
  11. O. J. F. Martin, Ch. Girard, “Controlling and tuning strong optical field gradients at the local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
    [CrossRef]
  12. L. Novotny, X. Bian, X. S. Xie, “Theory of nanometric tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
    [CrossRef]
  13. S. Ducourtieux, S. Grésillon, J. C. Rivoal, H. Cory, “Imaging subwavelength holes in chromium films with apertureless SNOM. Comparison between experiment and calculations,” submitted to Eur. Phys. J. Appl. Phys.
  14. S. Ducourtieux, “Microscopie optique en champ proche sans ouverture: développement d’un instrument et application à l’étude de nanostructures,” Ph.D. thesis (Université de Paris 6, Paris, France, 2001).

2000 (2)

C. Vannier, C. Bainier, D. Courjon, “Isotropic incoherent scanning tunneling optical microscope (I2 STOM),” Optics Commun. 175, 83–88 (2000).
[CrossRef]

S. Grésillon, S. Ducourtieux, A. Lahrech, L. Aigouy, J. C. Rivoal, A. C. Boccara, “Nanometer scale apertureless near field microscopy,” Appl. Surf. Sci. 164, 118–123 (2000).
[CrossRef]

1999 (2)

1997 (2)

O. J. F. Martin, Ch. Girard, “Controlling and tuning strong optical field gradients at the local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
[CrossRef]

L. Novotny, X. Bian, X. S. Xie, “Theory of nanometric tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

1996 (1)

Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
[CrossRef]

1995 (1)

R. Micheletto, H. Fukuda, M. Ohtsu, “A simple method for the production of a two-dimensional ordered array of small latex particles,” Langmuir 11, 44–47 (1995).
[CrossRef]

1994 (1)

D. Courjon, C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989–1028 (1994).
[CrossRef]

Aigouy, L.

S. Grésillon, S. Ducourtieux, A. Lahrech, L. Aigouy, J. C. Rivoal, A. C. Boccara, “Nanometer scale apertureless near field microscopy,” Appl. Surf. Sci. 164, 118–123 (2000).
[CrossRef]

L. Aigouy, A. Lahrech, S. Grésillon, H. Cory, A.-C. Boccara, J. C. Rivoal, “Polarization effects in apertureless scanning near-field optical microscopy: an experimental study,” Opt. Lett. 24, 187–189 (1999).
[CrossRef]

Bainier, C.

C. Vannier, C. Bainier, D. Courjon, “Isotropic incoherent scanning tunneling optical microscope (I2 STOM),” Optics Commun. 175, 83–88 (2000).
[CrossRef]

D. Courjon, C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989–1028 (1994).
[CrossRef]

Bian, X.

L. Novotny, X. Bian, X. S. Xie, “Theory of nanometric tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Boccara, A. C.

S. Grésillon, S. Ducourtieux, A. Lahrech, L. Aigouy, J. C. Rivoal, A. C. Boccara, “Nanometer scale apertureless near field microscopy,” Appl. Surf. Sci. 164, 118–123 (2000).
[CrossRef]

Boccara, A.-C.

Cory, H.

L. Aigouy, A. Lahrech, S. Grésillon, H. Cory, A.-C. Boccara, J. C. Rivoal, “Polarization effects in apertureless scanning near-field optical microscopy: an experimental study,” Opt. Lett. 24, 187–189 (1999).
[CrossRef]

S. Ducourtieux, S. Grésillon, J. C. Rivoal, H. Cory, “Imaging subwavelength holes in chromium films with apertureless SNOM. Comparison between experiment and calculations,” submitted to Eur. Phys. J. Appl. Phys.

Courjon, D.

C. Vannier, C. Bainier, D. Courjon, “Isotropic incoherent scanning tunneling optical microscope (I2 STOM),” Optics Commun. 175, 83–88 (2000).
[CrossRef]

J. Salvi, D. Courjon, “Resonant optical cavity used as a nonradiating source for optical near-field microscopy,” Opt. Lett. 24, 1811–1813 (1999).
[CrossRef]

D. Courjon, C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989–1028 (1994).
[CrossRef]

Ducourtieux, S.

S. Grésillon, S. Ducourtieux, A. Lahrech, L. Aigouy, J. C. Rivoal, A. C. Boccara, “Nanometer scale apertureless near field microscopy,” Appl. Surf. Sci. 164, 118–123 (2000).
[CrossRef]

S. Ducourtieux, S. Grésillon, J. C. Rivoal, H. Cory, “Imaging subwavelength holes in chromium films with apertureless SNOM. Comparison between experiment and calculations,” submitted to Eur. Phys. J. Appl. Phys.

S. Ducourtieux, “Microscopie optique en champ proche sans ouverture: développement d’un instrument et application à l’étude de nanostructures,” Ph.D. thesis (Université de Paris 6, Paris, France, 2001).

Fukuda, H.

R. Micheletto, H. Fukuda, M. Ohtsu, “A simple method for the production of a two-dimensional ordered array of small latex particles,” Langmuir 11, 44–47 (1995).
[CrossRef]

Girard, Ch.

O. J. F. Martin, Ch. Girard, “Controlling and tuning strong optical field gradients at the local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
[CrossRef]

Grésillon, S.

S. Grésillon, S. Ducourtieux, A. Lahrech, L. Aigouy, J. C. Rivoal, A. C. Boccara, “Nanometer scale apertureless near field microscopy,” Appl. Surf. Sci. 164, 118–123 (2000).
[CrossRef]

L. Aigouy, A. Lahrech, S. Grésillon, H. Cory, A.-C. Boccara, J. C. Rivoal, “Polarization effects in apertureless scanning near-field optical microscopy: an experimental study,” Opt. Lett. 24, 187–189 (1999).
[CrossRef]

S. Ducourtieux, S. Grésillon, J. C. Rivoal, H. Cory, “Imaging subwavelength holes in chromium films with apertureless SNOM. Comparison between experiment and calculations,” submitted to Eur. Phys. J. Appl. Phys.

Hori, H.

M. Ohtsu, H. Hori, “Basic principles to nano-fabrication and nano-photonics,” in Near-Field Nano-Optics (Kluwer Academic/Plenum, New York, 1999).
[CrossRef]

Lahrech, A.

S. Grésillon, S. Ducourtieux, A. Lahrech, L. Aigouy, J. C. Rivoal, A. C. Boccara, “Nanometer scale apertureless near field microscopy,” Appl. Surf. Sci. 164, 118–123 (2000).
[CrossRef]

L. Aigouy, A. Lahrech, S. Grésillon, H. Cory, A.-C. Boccara, J. C. Rivoal, “Polarization effects in apertureless scanning near-field optical microscopy: an experimental study,” Opt. Lett. 24, 187–189 (1999).
[CrossRef]

Martin, O. J. F.

O. J. F. Martin, Ch. Girard, “Controlling and tuning strong optical field gradients at the local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
[CrossRef]

Martin, Y.

Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
[CrossRef]

Micheletto, R.

R. Micheletto, H. Fukuda, M. Ohtsu, “A simple method for the production of a two-dimensional ordered array of small latex particles,” Langmuir 11, 44–47 (1995).
[CrossRef]

Novotny, L.

L. Novotny, X. Bian, X. S. Xie, “Theory of nanometric tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Ohtsu, M.

R. Micheletto, H. Fukuda, M. Ohtsu, “A simple method for the production of a two-dimensional ordered array of small latex particles,” Langmuir 11, 44–47 (1995).
[CrossRef]

M. Ohtsu, H. Hori, “Basic principles to nano-fabrication and nano-photonics,” in Near-Field Nano-Optics (Kluwer Academic/Plenum, New York, 1999).
[CrossRef]

Rivoal, J. C.

S. Grésillon, S. Ducourtieux, A. Lahrech, L. Aigouy, J. C. Rivoal, A. C. Boccara, “Nanometer scale apertureless near field microscopy,” Appl. Surf. Sci. 164, 118–123 (2000).
[CrossRef]

L. Aigouy, A. Lahrech, S. Grésillon, H. Cory, A.-C. Boccara, J. C. Rivoal, “Polarization effects in apertureless scanning near-field optical microscopy: an experimental study,” Opt. Lett. 24, 187–189 (1999).
[CrossRef]

S. Ducourtieux, S. Grésillon, J. C. Rivoal, H. Cory, “Imaging subwavelength holes in chromium films with apertureless SNOM. Comparison between experiment and calculations,” submitted to Eur. Phys. J. Appl. Phys.

Salvi, J.

J. Salvi, D. Courjon, “Resonant optical cavity used as a nonradiating source for optical near-field microscopy,” Opt. Lett. 24, 1811–1813 (1999).
[CrossRef]

J. Salvi, “Mise en oeuvre d’un résonateur optique’ en microscopie en champ proche afin d’augmenter les résolutions latérales et le rapport signal sur bruit,” Ph.D. thesis (Université de Franche-Comté, Besançon, France, 2000).

Thiébaud, C.

C. Thiébaud, “Apport de l’inspection haute résolution à l’étude de matériaux ferroélectriques en couches minces. Activité électro-optique champ lointain d’un fluide électrorhéologique,” Ph.D. thesis (Université de Franche-Comté, Besançon, France, 2001).

Vannier, C.

C. Vannier, C. Bainier, D. Courjon, “Isotropic incoherent scanning tunneling optical microscope (I2 STOM),” Optics Commun. 175, 83–88 (2000).
[CrossRef]

Wickramasinghe, H. K.

Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
[CrossRef]

Xie, X. S.

L. Novotny, X. Bian, X. S. Xie, “Theory of nanometric tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Zenhausern, F.

Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Martin, F. Zenhausern, H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
[CrossRef]

O. J. F. Martin, Ch. Girard, “Controlling and tuning strong optical field gradients at the local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
[CrossRef]

Appl. Surf. Sci. (1)

S. Grésillon, S. Ducourtieux, A. Lahrech, L. Aigouy, J. C. Rivoal, A. C. Boccara, “Nanometer scale apertureless near field microscopy,” Appl. Surf. Sci. 164, 118–123 (2000).
[CrossRef]

Langmuir (1)

R. Micheletto, H. Fukuda, M. Ohtsu, “A simple method for the production of a two-dimensional ordered array of small latex particles,” Langmuir 11, 44–47 (1995).
[CrossRef]

Opt. Lett. (2)

Optics Commun. (1)

C. Vannier, C. Bainier, D. Courjon, “Isotropic incoherent scanning tunneling optical microscope (I2 STOM),” Optics Commun. 175, 83–88 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

L. Novotny, X. Bian, X. S. Xie, “Theory of nanometric tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Rep. Prog. Phys. (1)

D. Courjon, C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989–1028 (1994).
[CrossRef]

Other (5)

M. Ohtsu, H. Hori, “Basic principles to nano-fabrication and nano-photonics,” in Near-Field Nano-Optics (Kluwer Academic/Plenum, New York, 1999).
[CrossRef]

J. Salvi, “Mise en oeuvre d’un résonateur optique’ en microscopie en champ proche afin d’augmenter les résolutions latérales et le rapport signal sur bruit,” Ph.D. thesis (Université de Franche-Comté, Besançon, France, 2000).

C. Thiébaud, “Apport de l’inspection haute résolution à l’étude de matériaux ferroélectriques en couches minces. Activité électro-optique champ lointain d’un fluide électrorhéologique,” Ph.D. thesis (Université de Franche-Comté, Besançon, France, 2001).

S. Ducourtieux, S. Grésillon, J. C. Rivoal, H. Cory, “Imaging subwavelength holes in chromium films with apertureless SNOM. Comparison between experiment and calculations,” submitted to Eur. Phys. J. Appl. Phys.

S. Ducourtieux, “Microscopie optique en champ proche sans ouverture: développement d’un instrument et application à l’étude de nanostructures,” Ph.D. thesis (Université de Paris 6, Paris, France, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Scheme of test object realization.

Fig. 2
Fig. 2

Electron-beam microscope image of a random distribution of holes in a 18-nm chromium layer (Stereoscan 440).

Fig. 3
Fig. 3

AFM images. (a) Scanned by means of a commercial AFM (SMENA from NT-MDT Co.), with x and y profiles in (c) and (d). (b) By use of homemade AFM microscope, three-dimensional image with x and y profiles in (e) and (f).

Fig. 4
Fig. 4

Shear-force and AFM images. (a) Shear-force image with x profile in (c). (b) AFM image with the tuning fork alternative oscillating system and an x profile in (d).

Fig. 5
Fig. 5

Classical microscopical image of the sample with a 100× objective.

Fig. 6
Fig. 6

Retained near-field microscope configurations. (a) Basic STOM, (b) resonant STOM, (c) isotropic STOM, (d) basic reflection SNOM, (e) reflection SNOM with polarization control, (f) transmission SNOM with polarization control, (g) apertureless SNOM (piezoelectric transducer ceramic version), (h) apertureless SNOM (tuning fork version). PZT, Piezoelectric transducer.

Fig. 7
Fig. 7

Comparison of STOM images obtained in three configurations. (a) and (b) Basic STOM images, shear force and optics, respectively. (c) and (d) Resonant STOM images, shear force and optics, respectively. (e) and (f) Isotropic STOM images, shear force and optics, respectively. The last optical image exhibits high contrast and almost no parasitic fringes owing to the use of incoherent nonpolarized illumination.

Fig. 8
Fig. 8

Topography and optical images in reflection SNOM. (a) and (b) Basic configuration: shear-force image and optical image, respectively. (c) and (d) to (g) Second configuration: shear-force image and set of optical images, respectively. The last four images are scanned with four positions of the output analyzer: (d) and (e) parallel and perpendicular to incident polarization, respectively; (f) and (g) intermediate positions.

Fig. 9
Fig. 9

Transmission SNOM images. (a) Topography, (b) optics.

Fig. 11
Fig. 11

Polarization effect on optical images in apertureless first configuration.

Fig. 12
Fig. 12

Apertureless second configuration, in (b) transmission mode and in (d) reflection mode. In the vicinity of each hole, two antisymmetric lobes (black and bright) are clearly observed in the optical images.

Fig. 10
Fig. 10

AFM and SNOM images of a single hole in apertureless first configuration. The two rings in the SNOM image correspond to the bottom and top edges of the hole.

Tables (4)

Tables Icon

Table 1 Topography Parameters

Tables Icon

Table 2 STOM Configurations

Tables Icon

Table 3 SNOM Configurations

Tables Icon

Table 4 Apertureless Configurations

Metrics