Abstract

Surface plasmon resonance (SPR) sensing on a silicon-based platform is considered. We have studied properties of SPR in a combined silicon-dielectric layer-gold film-sample medium structure and established conditions of the simultaneous excitation of two plasmon polariton modes that provide narrow and well-separated minima of the reflected intensity. It has been shown that the external mode over the gold-sample medium interface demonstrates a highly sensitive response to a change in the refractive index of the sample medium, whereas the internal mode over the dielectric-gold interface is almost insensitive to medium parameters. We propose that the internal mode can be used as an effective reference zero point for miniature and portable SPR-based systems designed for field and multichannel sensing.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 541–566 (1997).
  2. P. B. Garland, “Optical evanescent wave methods for the study of biomolecular interactions,” Q. Rev. Biophys. 29, 91–117 (1996).
  3. E. Kretschmann, H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).
  4. E. Kretschmann, “Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).
  5. B. Liedberg, C. Nylander, I. Lundstrum, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299–304 (1983).
  6. B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface plasmon resonance—how it all started,” Biosens. Bioelectron. 10, i–ix (1995).
  7. J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).
  8. L. M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 23, 1469–1470 (1988).
  9. R. C. Jorgenson, S. S. Yee, “Fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
  10. F. Abeles, T. Lopez-Rios, A. Tadjeddine, “Investigation of the metal-electrolyte interface using surface plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).
  11. A. V. Kabashin, P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
  12. A. N. Grigorenko, P. I. Nikitin, A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
  13. S. Patskovsky, A. V. Kabashin, M. Meunier, J. H. Luong, “Surface plasmon resonance sensor with silicon-based prism coupling,” in Advanced Biomedical and Clinical Diagnostic Systems, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, G. E. Cohn, eds., Proc. SPIE4958, 144–148 (2003).
  14. S. Patskovsky, A. V. Kabashin, M. Meunier, J. H. T. Luong, “Properties and sensing characteristics of surface plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20, 1644–1650 (2003).
  15. F. Abeles, T. Lopez-Rios, “Decoupled optical excitation of surface plasmons at the two surfaces of a thin film,” Opt. Commun. 11, 89–92 (1974).
  16. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
  17. G. G. Nenninger, P. Tobiska, J. Homola, S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151 (2001).
  18. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
  19. H. Raether, “Advances in research and development,” in Physics of Thin Films, G. Hass, M. H. Francombe, R. W. Hoffmann, eds. (Academic, New York, 1997), Vol. 9, pp. 145–261.
  20. R. A. Innes, J. R. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F 17, 277–287 (1987).
  21. K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
  22. A. H. Harvey, J. S. Gallagher, J. M. H. Levelt-Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
  23. L. Kou, D. Labrie, P. Chylek, “Refractive indices of water and ice in the 0.65 to 2.5-μm spectral range,” Appl. Opt. 32, 3531–3540 (1993).
  24. E. Hecht, Optics, 2nd ed. (Addison-Wesley, Reading, Mass., 1987).

2003 (1)

2001 (1)

G. G. Nenninger, P. Tobiska, J. Homola, S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151 (2001).

2000 (1)

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).

1999 (1)

A. N. Grigorenko, P. I. Nikitin, A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).

1998 (3)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).

A. V. Kabashin, P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).

A. H. Harvey, J. S. Gallagher, J. M. H. Levelt-Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).

1997 (1)

P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 541–566 (1997).

1996 (2)

P. B. Garland, “Optical evanescent wave methods for the study of biomolecular interactions,” Q. Rev. Biophys. 29, 91–117 (1996).

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).

1995 (1)

B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface plasmon resonance—how it all started,” Biosens. Bioelectron. 10, i–ix (1995).

1993 (2)

R. C. Jorgenson, S. S. Yee, “Fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).

L. Kou, D. Labrie, P. Chylek, “Refractive indices of water and ice in the 0.65 to 2.5-μm spectral range,” Appl. Opt. 32, 3531–3540 (1993).

1988 (1)

L. M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 23, 1469–1470 (1988).

1987 (1)

R. A. Innes, J. R. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F 17, 277–287 (1987).

1983 (1)

B. Liedberg, C. Nylander, I. Lundstrum, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299–304 (1983).

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).

1975 (1)

F. Abeles, T. Lopez-Rios, A. Tadjeddine, “Investigation of the metal-electrolyte interface using surface plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).

1974 (1)

F. Abeles, T. Lopez-Rios, “Decoupled optical excitation of surface plasmons at the two surfaces of a thin film,” Opt. Commun. 11, 89–92 (1974).

1972 (1)

E. Kretschmann, “Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).

1968 (1)

E. Kretschmann, H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).

Abeles, F.

F. Abeles, T. Lopez-Rios, A. Tadjeddine, “Investigation of the metal-electrolyte interface using surface plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).

F. Abeles, T. Lopez-Rios, “Decoupled optical excitation of surface plasmons at the two surfaces of a thin film,” Opt. Commun. 11, 89–92 (1974).

Arwin, H.

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).

Bartholomew, D. U.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).

Carr, R.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).

Chylek, P.

Elkind, J.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).

Furlong, C. E.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).

Gallagher, J. S.

A. H. Harvey, J. S. Gallagher, J. M. H. Levelt-Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).

Garland, P. B.

P. B. Garland, “Optical evanescent wave methods for the study of biomolecular interactions,” Q. Rev. Biophys. 29, 91–117 (1996).

Grigorenko, A. N.

A. N. Grigorenko, P. I. Nikitin, A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).

Harvey, A. H.

A. H. Harvey, J. S. Gallagher, J. M. H. Levelt-Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).

Hecht, E.

E. Hecht, Optics, 2nd ed. (Addison-Wesley, Reading, Mass., 1987).

Herzinger, C. M.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).

Homola, J.

G. G. Nenninger, P. Tobiska, J. Homola, S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151 (2001).

Innes, R. A.

R. A. Innes, J. R. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F 17, 277–287 (1987).

Johansen, K.

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).

Johs, B.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).

Jorgenson, R. C.

R. C. Jorgenson, S. S. Yee, “Fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).

Kabashin, A. V.

S. Patskovsky, A. V. Kabashin, M. Meunier, J. H. T. Luong, “Properties and sensing characteristics of surface plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20, 1644–1650 (2003).

A. N. Grigorenko, P. I. Nikitin, A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).

A. V. Kabashin, P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).

S. Patskovsky, A. V. Kabashin, M. Meunier, J. H. Luong, “Surface plasmon resonance sensor with silicon-based prism coupling,” in Advanced Biomedical and Clinical Diagnostic Systems, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, G. E. Cohn, eds., Proc. SPIE4958, 144–148 (2003).

Kou, L.

Kretschmann, E.

E. Kretschmann, “Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).

E. Kretschmann, H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).

Kukanskis, K. A.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).

Labrie, D.

Levelt-Sengers, J. M. H.

A. H. Harvey, J. S. Gallagher, J. M. H. Levelt-Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).

Liedberg, B.

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).

B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface plasmon resonance—how it all started,” Biosens. Bioelectron. 10, i–ix (1995).

B. Liedberg, C. Nylander, I. Lundstrum, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299–304 (1983).

Lopez-Rios, T.

F. Abeles, T. Lopez-Rios, A. Tadjeddine, “Investigation of the metal-electrolyte interface using surface plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).

F. Abeles, T. Lopez-Rios, “Decoupled optical excitation of surface plasmons at the two surfaces of a thin film,” Opt. Commun. 11, 89–92 (1974).

Lundstrom, I.

B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface plasmon resonance—how it all started,” Biosens. Bioelectron. 10, i–ix (1995).

Lundström, I.

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).

Lundstrum, I.

B. Liedberg, C. Nylander, I. Lundstrum, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299–304 (1983).

Luong, J. H.

S. Patskovsky, A. V. Kabashin, M. Meunier, J. H. Luong, “Surface plasmon resonance sensor with silicon-based prism coupling,” in Advanced Biomedical and Clinical Diagnostic Systems, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, G. E. Cohn, eds., Proc. SPIE4958, 144–148 (2003).

Luong, J. H. T.

McGahan, W. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).

Melendez, J. L.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).

Meunier, M.

S. Patskovsky, A. V. Kabashin, M. Meunier, J. H. T. Luong, “Properties and sensing characteristics of surface plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20, 1644–1650 (2003).

S. Patskovsky, A. V. Kabashin, M. Meunier, J. H. Luong, “Surface plasmon resonance sensor with silicon-based prism coupling,” in Advanced Biomedical and Clinical Diagnostic Systems, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, G. E. Cohn, eds., Proc. SPIE4958, 144–148 (2003).

Nenninger, G. G.

G. G. Nenninger, P. Tobiska, J. Homola, S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151 (2001).

Nikitin, P. I.

A. N. Grigorenko, P. I. Nikitin, A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).

A. V. Kabashin, P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).

Nylander, C.

B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface plasmon resonance—how it all started,” Biosens. Bioelectron. 10, i–ix (1995).

B. Liedberg, C. Nylander, I. Lundstrum, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299–304 (1983).

Patskovsky, S.

S. Patskovsky, A. V. Kabashin, M. Meunier, J. H. T. Luong, “Properties and sensing characteristics of surface plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20, 1644–1650 (2003).

S. Patskovsky, A. V. Kabashin, M. Meunier, J. H. Luong, “Surface plasmon resonance sensor with silicon-based prism coupling,” in Advanced Biomedical and Clinical Diagnostic Systems, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, G. E. Cohn, eds., Proc. SPIE4958, 144–148 (2003).

Paulson, W.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).

Raether, H.

E. Kretschmann, H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).

H. Raether, “Advances in research and development,” in Physics of Thin Films, G. Hass, M. H. Francombe, R. W. Hoffmann, eds. (Academic, New York, 1997), Vol. 9, pp. 145–261.

Sambles, J. R.

R. A. Innes, J. R. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F 17, 277–287 (1987).

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).

Schuck, P.

P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 541–566 (1997).

Tadjeddine, A.

F. Abeles, T. Lopez-Rios, A. Tadjeddine, “Investigation of the metal-electrolyte interface using surface plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).

Tobiska, P.

G. G. Nenninger, P. Tobiska, J. Homola, S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151 (2001).

Uttamchandani, D.

L. M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 23, 1469–1470 (1988).

Woodbury, R. G.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).

Woollam, J. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).

Yee, S. S.

G. G. Nenninger, P. Tobiska, J. Homola, S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151 (2001).

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).

R. C. Jorgenson, S. S. Yee, “Fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).

Zhang, L. M.

L. M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 23, 1469–1470 (1988).

Annu. Rev. Biophys. Biomol. Struct. (1)

P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 541–566 (1997).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. N. Grigorenko, P. I. Nikitin, A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).

Biosens. Bioelectron. (1)

B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface plasmon resonance—how it all started,” Biosens. Bioelectron. 10, i–ix (1995).

Electron. Lett. (1)

L. M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 23, 1469–1470 (1988).

J. Appl. Phys. (1)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Ref. Data (1)

A. H. Harvey, J. S. Gallagher, J. M. H. Levelt-Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).

J. Phys. F (1)

R. A. Innes, J. R. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F 17, 277–287 (1987).

Opt. Commun. (3)

A. V. Kabashin, P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).

F. Abeles, T. Lopez-Rios, “Decoupled optical excitation of surface plasmons at the two surfaces of a thin film,” Opt. Commun. 11, 89–92 (1974).

E. Kretschmann, “Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).

Q. Rev. Biophys. (1)

P. B. Garland, “Optical evanescent wave methods for the study of biomolecular interactions,” Q. Rev. Biophys. 29, 91–117 (1996).

Rev. Sci. Instrum. (1)

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).

Sens. Actuators B (4)

B. Liedberg, C. Nylander, I. Lundstrum, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299–304 (1983).

R. C. Jorgenson, S. S. Yee, “Fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).

G. G. Nenninger, P. Tobiska, J. Homola, S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151 (2001).

Solid State Commun. (1)

F. Abeles, T. Lopez-Rios, A. Tadjeddine, “Investigation of the metal-electrolyte interface using surface plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).

Z. Naturforsch. Teil A (1)

E. Kretschmann, H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).

Other (3)

H. Raether, “Advances in research and development,” in Physics of Thin Films, G. Hass, M. H. Francombe, R. W. Hoffmann, eds. (Academic, New York, 1997), Vol. 9, pp. 145–261.

S. Patskovsky, A. V. Kabashin, M. Meunier, J. H. Luong, “Surface plasmon resonance sensor with silicon-based prism coupling,” in Advanced Biomedical and Clinical Diagnostic Systems, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, G. E. Cohn, eds., Proc. SPIE4958, 144–148 (2003).

E. Hecht, Optics, 2nd ed. (Addison-Wesley, Reading, Mass., 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the four-layer system (silicon prism-dielectric film-gold film-tested medium) used in the experiment and calculations.

Fig. 2
Fig. 2

Optimal thicknesses of the gold film and the SiO2 and Si3N4 dielectric films as a function of wavelength for 35-nm gold film.

Fig. 3
Fig. 3

Typical angular reflectivity curves in the Si-SiO2-Au structure for configurations of (a) gaseous and (b) aqueous sample media. The broken and solid curves represent the calculated and experimental data, respectively.

Fig. 4
Fig. 4

SPR dispersion curves in the Si-SiO2-Au structure for configurations of (a) gaseous and (b) aqueous sample media. The symbols represent the experimental data, the curves depict the results of the calculations.

Fig. 5
Fig. 5

Angular sensing response of the external and internal plasmon polariton modes to a change in refractive index n s of the tested medium: (a) the Si-SiO2-Au and Si-Si3N4-Au structures and (b) relative percentage of change.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

npωcsin θSPR=kSP.
kSPωcεmωεsωεmω+εsω1/2.

Metrics