Abstract

A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated in a unidirectional mode, we obtained more than 520 mW of signal power in one beam. When the laser was operated in a bidirectional mode, we obtained 600 mW of signal power (300 mW in two separate beams). The power and the spectral features of the laser in the unidirectional and bidirectional modes were measured while the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Schiller, R. L. Byer, “Quadruply resonant optical parametric oscillator in a monolithic total-internal-reflection resonator,” J. Opt. Soc. Am. B 10, 1696–1707 (1993).
    [CrossRef]
  2. S. T. Yang, R. C. Eckardt, R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator pumped by a single-frequency resonantly doubled Nd:YAG laser,” Opt. Lett. 18, 971–973 (1993).
    [CrossRef] [PubMed]
  3. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
    [CrossRef] [PubMed]
  4. F. G. Colville, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave, singly resonant intracavity parametric oscillator,” Opt. Lett. 22, 75–77 (1997).
    [CrossRef] [PubMed]
  5. N. M. Kroll, “Parametric amplification in spatially extended media and applications to the design of tuneable oscillators at optical frequencies,” Phys. Rev. 127, 1207–1211 (1962).
    [CrossRef]
  6. M. K. Oshman, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. QE-4, 491–502 (1968).
    [CrossRef]
  7. D. J. M. Stothard, M. Ebrahimzadeh, M. H. Dunn, “Low-pump-threshold continuous-wave singly resonant optical parametric oscillator,” Opt. Lett. 23, 1895–1897 (1998).
    [CrossRef]
  8. G. A. Turnbull, T. J. Edwards, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave singly-resonant optical parametric oscillator based on periodically-poled LiNbO3,” Electron. Lett. 33, 1817–1818 (1997).
    [CrossRef]
  9. T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 23, 837–839 (1998).
    [CrossRef]
  10. T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, F. G. Colville, “High-power, continuous-wave, singly resonant, intracavity optical parametric oscillator,” Appl. Phys. Lett. 72, 13, 1527–1529 (1998).
    [CrossRef]
  11. S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
    [CrossRef]
  12. K. Schneider, S. Schiller, “Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys. B B65, 775–777 (1997).
    [CrossRef]
  13. K. Schneider, P. Kramper, S. Schiller, J. Mlynek, “Toward an optical synthesizer: a single-frequency parametric oscillator using periodically poled LiNbO3,” Opt. Lett. 22, 1293–1295 (1997).
    [CrossRef]
  14. S. T. Yang, R. C. Eckardt, R. L. Byer, “1.9-W cw ring-cavity singly resonant optical parametric oscillator,” Opt. Lett. 19, 475–477 (1994).
    [CrossRef] [PubMed]
  15. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 21, 713–715 (1996).
    [CrossRef] [PubMed]
  16. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]

1998 (3)

1997 (5)

1996 (2)

1994 (1)

1993 (2)

1979 (1)

S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[CrossRef]

1968 (1)

M. K. Oshman, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. QE-4, 491–502 (1968).
[CrossRef]

1962 (1)

N. M. Kroll, “Parametric amplification in spatially extended media and applications to the design of tuneable oscillators at optical frequencies,” Phys. Rev. 127, 1207–1211 (1962).
[CrossRef]

Alexander, J. I.

Bosenberg, W. R.

Brosnan, S. J.

S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[CrossRef]

Byer, R. L.

Colville, F. G.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, F. G. Colville, “High-power, continuous-wave, singly resonant, intracavity optical parametric oscillator,” Appl. Phys. Lett. 72, 13, 1527–1529 (1998).
[CrossRef]

F. G. Colville, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave, singly resonant intracavity parametric oscillator,” Opt. Lett. 22, 75–77 (1997).
[CrossRef] [PubMed]

Drobshoff, A.

Dunn, M. H.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 23, 837–839 (1998).
[CrossRef]

D. J. M. Stothard, M. Ebrahimzadeh, M. H. Dunn, “Low-pump-threshold continuous-wave singly resonant optical parametric oscillator,” Opt. Lett. 23, 1895–1897 (1998).
[CrossRef]

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, F. G. Colville, “High-power, continuous-wave, singly resonant, intracavity optical parametric oscillator,” Appl. Phys. Lett. 72, 13, 1527–1529 (1998).
[CrossRef]

G. A. Turnbull, T. J. Edwards, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave singly-resonant optical parametric oscillator based on periodically-poled LiNbO3,” Electron. Lett. 33, 1817–1818 (1997).
[CrossRef]

F. G. Colville, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave, singly resonant intracavity parametric oscillator,” Opt. Lett. 22, 75–77 (1997).
[CrossRef] [PubMed]

Ebrahimzadeh, M.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, F. G. Colville, “High-power, continuous-wave, singly resonant, intracavity optical parametric oscillator,” Appl. Phys. Lett. 72, 13, 1527–1529 (1998).
[CrossRef]

D. J. M. Stothard, M. Ebrahimzadeh, M. H. Dunn, “Low-pump-threshold continuous-wave singly resonant optical parametric oscillator,” Opt. Lett. 23, 1895–1897 (1998).
[CrossRef]

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 23, 837–839 (1998).
[CrossRef]

F. G. Colville, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave, singly resonant intracavity parametric oscillator,” Opt. Lett. 22, 75–77 (1997).
[CrossRef] [PubMed]

G. A. Turnbull, T. J. Edwards, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave singly-resonant optical parametric oscillator based on periodically-poled LiNbO3,” Electron. Lett. 33, 1817–1818 (1997).
[CrossRef]

Eckardt, R. C.

Edwards, T. J.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 23, 837–839 (1998).
[CrossRef]

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, F. G. Colville, “High-power, continuous-wave, singly resonant, intracavity optical parametric oscillator,” Appl. Phys. Lett. 72, 13, 1527–1529 (1998).
[CrossRef]

G. A. Turnbull, T. J. Edwards, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave singly-resonant optical parametric oscillator based on periodically-poled LiNbO3,” Electron. Lett. 33, 1817–1818 (1997).
[CrossRef]

Jundt, D. H.

Kramper, P.

Kroll, N. M.

N. M. Kroll, “Parametric amplification in spatially extended media and applications to the design of tuneable oscillators at optical frequencies,” Phys. Rev. 127, 1207–1211 (1962).
[CrossRef]

Mlynek, J.

Oshman, M. K.

M. K. Oshman, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. QE-4, 491–502 (1968).
[CrossRef]

Schiller, S.

Schneider, K.

K. Schneider, S. Schiller, “Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys. B B65, 775–777 (1997).
[CrossRef]

K. Schneider, P. Kramper, S. Schiller, J. Mlynek, “Toward an optical synthesizer: a single-frequency parametric oscillator using periodically poled LiNbO3,” Opt. Lett. 22, 1293–1295 (1997).
[CrossRef]

Stothard, D. J. M.

Turnbull, G. A.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 23, 837–839 (1998).
[CrossRef]

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, F. G. Colville, “High-power, continuous-wave, singly resonant, intracavity optical parametric oscillator,” Appl. Phys. Lett. 72, 13, 1527–1529 (1998).
[CrossRef]

G. A. Turnbull, T. J. Edwards, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave singly-resonant optical parametric oscillator based on periodically-poled LiNbO3,” Electron. Lett. 33, 1817–1818 (1997).
[CrossRef]

Yang, S. T.

Appl. Phys. B (1)

K. Schneider, S. Schiller, “Narrow-linewidth, pump-enhanced singly-resonant parametric oscillator pumped at 532 nm,” Appl. Phys. B B65, 775–777 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, F. G. Colville, “High-power, continuous-wave, singly resonant, intracavity optical parametric oscillator,” Appl. Phys. Lett. 72, 13, 1527–1529 (1998).
[CrossRef]

Electron. Lett. (1)

G. A. Turnbull, T. J. Edwards, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave singly-resonant optical parametric oscillator based on periodically-poled LiNbO3,” Electron. Lett. 33, 1817–1818 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[CrossRef]

M. K. Oshman, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. QE-4, 491–502 (1968).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (9)

S. T. Yang, R. C. Eckardt, R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator pumped by a single-frequency resonantly doubled Nd:YAG laser,” Opt. Lett. 18, 971–973 (1993).
[CrossRef] [PubMed]

S. T. Yang, R. C. Eckardt, R. L. Byer, “1.9-W cw ring-cavity singly resonant optical parametric oscillator,” Opt. Lett. 19, 475–477 (1994).
[CrossRef] [PubMed]

F. G. Colville, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave, singly resonant intracavity parametric oscillator,” Opt. Lett. 22, 75–77 (1997).
[CrossRef] [PubMed]

K. Schneider, P. Kramper, S. Schiller, J. Mlynek, “Toward an optical synthesizer: a single-frequency parametric oscillator using periodically poled LiNbO3,” Opt. Lett. 22, 1293–1295 (1997).
[CrossRef]

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 23, 837–839 (1998).
[CrossRef]

D. J. M. Stothard, M. Ebrahimzadeh, M. H. Dunn, “Low-pump-threshold continuous-wave singly resonant optical parametric oscillator,” Opt. Lett. 23, 1895–1897 (1998).
[CrossRef]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 21, 713–715 (1996).
[CrossRef] [PubMed]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
[CrossRef] [PubMed]

Phys. Rev. (1)

N. M. Kroll, “Parametric amplification in spatially extended media and applications to the design of tuneable oscillators at optical frequencies,” Phys. Rev. 127, 1207–1211 (1962).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Unidirectional ring laser coupled to a standing wave SRO. R1–R4 are the laser mirrors. The Nd:YVO4 laser crystal is followed by a half-wave plate (HWP) and a Faraday rotator (FR). R5 and R6 together with the beam splitters BS1 and BS2 define the SRO resonator. The laser was monitored simultaneously with a beam analyzer, a p-i-n diode detector, a thermal power meter, and a Fabry-Perot spectrum analyzer. PPLN, periodically poled lithium niobate.

Fig. 2
Fig. 2

Signal output versus diode pump power when the laser is bidirectional. The output power of the signal was measured with a thermal power meter. The power was emitted in two separate beams.

Fig. 3
Fig. 3

Bidirectional laser power as monitored with a p-i-n detector. When the SRO was turned on, we observed a sharp drop in the laser power. The power fluctuations of the coupled-laser SRO are typical for every level of diode pump. High-power fluctuations were observed simultaneously with intense bursts of mode hopping of the axial modes of the laser.

Fig. 4
Fig. 4

Signal power versus the diode laser pump power when the Nd:YVO4 laser is unidirectional. The power meter indicated that the signal power had 2.5% rms power fluctuations. In microsecond time scale the p-i-n detector indicated 0.25% rms power fluctuations.

Fig. 5
Fig. 5

Unidirectional laser power as monitored with a p-i-n detector. When the SRO was turned on we observed a drop in the laser power. The power fluctuations of the laser when it is coupled to the SRO are typical for every level of pumping. The slow power fluctuations are due to the photorefractive effect in the PPLN.

Fig. 6
Fig. 6

Signal output power versus the temperature at the PPLN. At 160 °C the signal wavelength is 1870 nm; at 177 °C the signal wavelength is 1945 nm.

Tables (1)

Tables Icon

Table 1 Characteristics in the Three Modes of Operation

Metrics