Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Performance analyses of flowing chemical oxygen-iodine laser

Not Accessible

Your library or personal account may give you access

Abstract

A modified simplified rate-equation model that utilizes the Voigt profile function and another gain saturation model deduced from the kinetic equations are presented for performance analyses of a flowing chemical oxygen-iodine laser. Both models are adapted to both the condition of homogeneous broadening and that of inhomogeneous broadening being of importance and the condition of inhomogeneous broadening being predominant. Effects of temperature and iodine density on the output power and on variations of output power, optical intensity, and saturation intensity with flow distance are presented as well. There are differences between results of two models, but both qualitatively agree with known results.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Performance model for optical extraction from a Q-switched chemical oxygen–iodine laser

D. A. Copeland, A. H. Bauer, and K. D. Jones
Appl. Opt. 32(9) 1531-1546 (1993)

Chemical oxygen-iodine laser power generation with an off-axis hybrid resonator

Jürgen Handke, Wolfgang O. Schall, Thomas Hall, Frank Duschek, and Karin M. Grünewald
Appl. Opt. 45(16) 3831-3838 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved