Abstract

The principle of an antisymmetric grating coupler was recently proposed theoretically as a planar waveguide add-drop multiplexer. It has the potential to enhance significantly the functionality of an add-drop multiplexer based on grating-assisted coupling. Here we realize the concept experimentally in an all-fiber geometry. We show that conventional devices exhibit two high-reflection bands. In contrast, the antisymmetric grating coupler has only a single reflection band, thereby dramatically improving its filtering characteristics.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Baumann, J. Seifert, W. Novak, M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
    [CrossRef]
  2. M. Åslund, L. Poladian, J. Canning, C. M. de Sterke, “Add-drop multiplexing by dispersion inverted interference coupling,” IEEE J. Lightwave Technol. 20, 1585–1589 (2002).
    [CrossRef]
  3. G. Perrone, M. Laurenzano, I. Montrosset, “Design and feasibility analysis of an innovative integrated grating-assisted add-drop multiplexer,” IEEE J. Lightwave Technol. 19, 1943–1948 (2001).
    [CrossRef]
  4. J.-L. Archambault, P. St. J. Russell, S. Barcelos, P. Hua, L. Reekie, “Grating-frustrated coupler: a novel channel-dropping filter in single-mode optical fiber,” Opt. Lett. 19, 180–182 (1994).
    [CrossRef] [PubMed]
  5. L. Dong, P. Hua, T. A. Birks, L. Reekie, P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656–1658 (1996).
    [CrossRef]
  6. A. S. Kewitsch, G. A. Rakuljic, P. A. Willems, A. Yariv, “All-fiber zero-insertion-loss add-drop filter for wavelength-division multiplexing,” Opt. Lett. 23, 106–108 (1998).
    [CrossRef]
  7. C. Riziotis, M. N. Zervas, “Design considerations in optical add/drop multiplexers based on grating-assisted null couplers,” J. Lightwave Technol. 19, 92–104 (2001).
    [CrossRef]
  8. X. Daxhelet, S. Lacroix, “UV trimming of fused fiber coupler spectral response: a complete model,” IEEE Photon. Technol. Lett. 10, 1289–1291 (1998).
    [CrossRef]
  9. M. L. Åslund, J. Canning, L. Poladian, C. M. de Sterke, “Novel characterization technique with 0.5 ppm spatial accuracy of fringe period in Bragg gratings,” Opt. Express 11, 838–842 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  10. V. Jayaraman, Z.-M. Chuang, L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
    [CrossRef]

2003 (1)

2002 (1)

M. Åslund, L. Poladian, J. Canning, C. M. de Sterke, “Add-drop multiplexing by dispersion inverted interference coupling,” IEEE J. Lightwave Technol. 20, 1585–1589 (2002).
[CrossRef]

2001 (2)

G. Perrone, M. Laurenzano, I. Montrosset, “Design and feasibility analysis of an innovative integrated grating-assisted add-drop multiplexer,” IEEE J. Lightwave Technol. 19, 1943–1948 (2001).
[CrossRef]

C. Riziotis, M. N. Zervas, “Design considerations in optical add/drop multiplexers based on grating-assisted null couplers,” J. Lightwave Technol. 19, 92–104 (2001).
[CrossRef]

1998 (2)

X. Daxhelet, S. Lacroix, “UV trimming of fused fiber coupler spectral response: a complete model,” IEEE Photon. Technol. Lett. 10, 1289–1291 (1998).
[CrossRef]

A. S. Kewitsch, G. A. Rakuljic, P. A. Willems, A. Yariv, “All-fiber zero-insertion-loss add-drop filter for wavelength-division multiplexing,” Opt. Lett. 23, 106–108 (1998).
[CrossRef]

1996 (2)

I. Baumann, J. Seifert, W. Novak, M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[CrossRef]

L. Dong, P. Hua, T. A. Birks, L. Reekie, P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656–1658 (1996).
[CrossRef]

1994 (1)

1993 (1)

V. Jayaraman, Z.-M. Chuang, L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[CrossRef]

Archambault, J.-L.

Åslund, M.

M. Åslund, L. Poladian, J. Canning, C. M. de Sterke, “Add-drop multiplexing by dispersion inverted interference coupling,” IEEE J. Lightwave Technol. 20, 1585–1589 (2002).
[CrossRef]

Åslund, M. L.

Barcelos, S.

Baumann, I.

I. Baumann, J. Seifert, W. Novak, M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[CrossRef]

Birks, T. A.

L. Dong, P. Hua, T. A. Birks, L. Reekie, P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656–1658 (1996).
[CrossRef]

Canning, J.

M. L. Åslund, J. Canning, L. Poladian, C. M. de Sterke, “Novel characterization technique with 0.5 ppm spatial accuracy of fringe period in Bragg gratings,” Opt. Express 11, 838–842 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

M. Åslund, L. Poladian, J. Canning, C. M. de Sterke, “Add-drop multiplexing by dispersion inverted interference coupling,” IEEE J. Lightwave Technol. 20, 1585–1589 (2002).
[CrossRef]

Chuang, Z.-M.

V. Jayaraman, Z.-M. Chuang, L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[CrossRef]

Coldren, L. A.

V. Jayaraman, Z.-M. Chuang, L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[CrossRef]

Daxhelet, X.

X. Daxhelet, S. Lacroix, “UV trimming of fused fiber coupler spectral response: a complete model,” IEEE Photon. Technol. Lett. 10, 1289–1291 (1998).
[CrossRef]

de Sterke, C. M.

M. L. Åslund, J. Canning, L. Poladian, C. M. de Sterke, “Novel characterization technique with 0.5 ppm spatial accuracy of fringe period in Bragg gratings,” Opt. Express 11, 838–842 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

M. Åslund, L. Poladian, J. Canning, C. M. de Sterke, “Add-drop multiplexing by dispersion inverted interference coupling,” IEEE J. Lightwave Technol. 20, 1585–1589 (2002).
[CrossRef]

Dong, L.

L. Dong, P. Hua, T. A. Birks, L. Reekie, P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656–1658 (1996).
[CrossRef]

Hua, P.

L. Dong, P. Hua, T. A. Birks, L. Reekie, P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656–1658 (1996).
[CrossRef]

J.-L. Archambault, P. St. J. Russell, S. Barcelos, P. Hua, L. Reekie, “Grating-frustrated coupler: a novel channel-dropping filter in single-mode optical fiber,” Opt. Lett. 19, 180–182 (1994).
[CrossRef] [PubMed]

Jayaraman, V.

V. Jayaraman, Z.-M. Chuang, L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[CrossRef]

Kewitsch, A. S.

Lacroix, S.

X. Daxhelet, S. Lacroix, “UV trimming of fused fiber coupler spectral response: a complete model,” IEEE Photon. Technol. Lett. 10, 1289–1291 (1998).
[CrossRef]

Laurenzano, M.

G. Perrone, M. Laurenzano, I. Montrosset, “Design and feasibility analysis of an innovative integrated grating-assisted add-drop multiplexer,” IEEE J. Lightwave Technol. 19, 1943–1948 (2001).
[CrossRef]

Montrosset, I.

G. Perrone, M. Laurenzano, I. Montrosset, “Design and feasibility analysis of an innovative integrated grating-assisted add-drop multiplexer,” IEEE J. Lightwave Technol. 19, 1943–1948 (2001).
[CrossRef]

Novak, W.

I. Baumann, J. Seifert, W. Novak, M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[CrossRef]

Perrone, G.

G. Perrone, M. Laurenzano, I. Montrosset, “Design and feasibility analysis of an innovative integrated grating-assisted add-drop multiplexer,” IEEE J. Lightwave Technol. 19, 1943–1948 (2001).
[CrossRef]

Poladian, L.

M. L. Åslund, J. Canning, L. Poladian, C. M. de Sterke, “Novel characterization technique with 0.5 ppm spatial accuracy of fringe period in Bragg gratings,” Opt. Express 11, 838–842 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

M. Åslund, L. Poladian, J. Canning, C. M. de Sterke, “Add-drop multiplexing by dispersion inverted interference coupling,” IEEE J. Lightwave Technol. 20, 1585–1589 (2002).
[CrossRef]

Rakuljic, G. A.

Reekie, L.

L. Dong, P. Hua, T. A. Birks, L. Reekie, P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656–1658 (1996).
[CrossRef]

J.-L. Archambault, P. St. J. Russell, S. Barcelos, P. Hua, L. Reekie, “Grating-frustrated coupler: a novel channel-dropping filter in single-mode optical fiber,” Opt. Lett. 19, 180–182 (1994).
[CrossRef] [PubMed]

Riziotis, C.

Russell, P. St. J.

L. Dong, P. Hua, T. A. Birks, L. Reekie, P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656–1658 (1996).
[CrossRef]

Sauer, M.

I. Baumann, J. Seifert, W. Novak, M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[CrossRef]

Seifert, J.

I. Baumann, J. Seifert, W. Novak, M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[CrossRef]

St. J. Russell, P.

Willems, P. A.

Yariv, A.

Zervas, M. N.

IEEE J. Lightwave Technol. (2)

M. Åslund, L. Poladian, J. Canning, C. M. de Sterke, “Add-drop multiplexing by dispersion inverted interference coupling,” IEEE J. Lightwave Technol. 20, 1585–1589 (2002).
[CrossRef]

G. Perrone, M. Laurenzano, I. Montrosset, “Design and feasibility analysis of an innovative integrated grating-assisted add-drop multiplexer,” IEEE J. Lightwave Technol. 19, 1943–1948 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. Jayaraman, Z.-M. Chuang, L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

L. Dong, P. Hua, T. A. Birks, L. Reekie, P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656–1658 (1996).
[CrossRef]

I. Baumann, J. Seifert, W. Novak, M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[CrossRef]

X. Daxhelet, S. Lacroix, “UV trimming of fused fiber coupler spectral response: a complete model,” IEEE Photon. Technol. Lett. 10, 1289–1291 (1998).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Field distribution of a typical even (Ψ e ) and odd (Ψ o ) supermode of a twin-cored waveguide section (dashed circles). (b) Diagram of Bragg grating-induced coupling coefficients κ ij , between the forward propagating and the backpropagating signals A +/- of the even (e) and odd (o) supermodes, where i, j represent e and o).

Fig. 2
Fig. 2

D fiber used in the experiment with a 10-μm core diameter and a 125-μm fiber diameter.

Fig. 3
Fig. 3

(a) D-fiber coupler in which the D fibers are mounted on glass slides with the flat side containing gratings along the whole coupling length facing outward. (b) Longitudinal cross cut in which round fiber spacers lift the D fiber.

Fig. 4
Fig. 4

Output from all the ports with out-of-phase gratings as a function of wavelength. The solid curve represents the transmitted light from the input core, the dashed curve the transmitted light from the opposite core, the dash-dot curve the reflected light from the input core, and the long dashed curve the reflected light from the opposite core.

Fig. 5
Fig. 5

Coupled and reflected light as a function of wavelength: solid curve, in-phase gratings; dashed curve, out-of-phase gratings.

Fig. 6
Fig. 6

Normalized field distribution of (a) even and (b) odd supermodes along a single period of an antisymmetric grating structure. The dashed circles represent the position of the cores in the x direction, z is the direction of propagation, and E represents the amplitude of the supermode fields.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λeeBragg=neΛgrat+neΛgrat,λooBragg=noΛgrat+noΛgrat,λeoBragg=λoeBragg=neΛgrat+noΛgrat.
κij   Δnx, yaix, yajx, ydxdy,
κee0, κoo0, κeo=κoe=0.
Δλij=κijλBragg2πn,
κee=0, κoo=0, κeo=κoe0.
ΛPλBragg22neffΔλSS,

Metrics