Abstract

A highly versatile electro-optically induced waveguide is proposed, and some of its applications are discussed. The In1-sGasAstP1-t-based device can reconfigure an arbitrary refractive-index profile with high speed by using an array of stripe electrodes deposited along the device. This device can act as a variable fractional Fourier transformer or as a beam shaper. Some nonguiding applications based on a specific refractive-index patterning that is normal to the light-propagation direction, such as phase modulation and beam steering, can also be implemented with this device.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  2. D. Dragoman, M. Dragoman, Advanced Optoelectronic Devices (Springer-Verlag, Berlin, 1999).
    [CrossRef]
  3. B. Pezeshki, R. B. Apte, S. M. Lord, J. S. Harris, “Quantum well modulators for optical beam steering applications,” IEEE Photon. Technol. Lett. 3, 790–792 (1991).
    [CrossRef]
  4. S. Adachi, K. Oe, “Linear electro-optic effects in zincblende-type semiconductors: key properties of InGaAsP relevant to device design,” J. Appl. Phys. 56, 74–80 (1984).
    [CrossRef]
  5. A. F. Morpurgo, C. M. Marcus, D. B. Robinson, “Controlled fabrication of metallic electrodes with atomic separation,” Appl. Phys. Lett. 74, 2084–2086 (1999).
    [CrossRef]
  6. L. Fan, M. C. Wu, H. C. Lee, P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photon. Technol. Lett. 9, 505–507 (1997).
    [CrossRef]
  7. E. P. Burr, J. B. Song, A. J. Seeds, C. C. Button, “28 ps recovery time in an InGaAsP/InGaAsP multiple-quantum-well saturable absorber employing carrier sweepout,” J. Appl. Phys. 90, 3566–3569 (2002).
    [CrossRef]
  8. Y. Takagaki, E. Wiebicke, K. H. Ploog, “Fabrication of GHz-range surface-acoustic-wave transducers on LiNbO3 using imprint technology,” Nanotechnology 13, 15–17 (2001).
    [CrossRef]
  9. L. R. Dalton, “Rational design of organic electro-optic materials,” J. Phys. Condens. Matter 15, R897–R934 (2003).
    [CrossRef]
  10. S. El Yumin, K. Komori, S. Arai, “GaInAsP/InP semiconductor vertical GRIN-lens for semiconductor optical devices,” IEEE Photon. Technol. Lett. 6, 601–603 (1994).
    [CrossRef]
  11. D. Dragoman, M. Dragoman, “Band-engineered semiconductor optical waveguides for integral transform implementation,” J. Appl. Phys. 85, 3409–3412 (1999).
    [CrossRef]
  12. A. W. Lohmann, D. Mendlovic, Z. Zalevsky, “Fractional transformations in optics,” Prog. Opt. 38, 263–342 (1998).
    [CrossRef]
  13. A. W. Lohmann, “A fake zoom lens for fractional Fourier experiments,” Opt. Commun. 115, 437–443 (1995).
    [CrossRef]
  14. Y. Zhang, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, “New optical configurations for implementing Radon-Wigner display: matrix analysis approach,” Opt. Commun. 160, 292–300 (1999).
    [CrossRef]
  15. Y. Zhang, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, “Novel implementation of the Radon-Wigner display,” Opt. Commun. 166, 21–24 (1999).
    [CrossRef]
  16. D. Mendlovic, R. G. Dorsch, A. W. Lohmann, Z. Zalevsky, C. Ferreira, “Optical illustration of a varied fractional Fourier-transform order and the Radon-Wigner display,” Appl. Opt. 35, 3925–3929 (1996).
    [CrossRef] [PubMed]
  17. D. Dragoman, M. Dragoman, K.-H. Brenner, “Experimental demonstration of a continuously variant fractional Fourier transformer,” Appl. Opt. 38, 4985–4989 (1999).
    [CrossRef]
  18. M. Fatih Erden, H. M. Ozaktas, A. Sahin, D. Mendlovic, “Design of dynamically adjustable anamorphic fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997).
    [CrossRef]
  19. G. I. Stegeman, D. G. Hall, “Modulated index structures,” J. Opt. Soc. Am. A 7, 1387–1398 (1990).
    [CrossRef]

2003

L. R. Dalton, “Rational design of organic electro-optic materials,” J. Phys. Condens. Matter 15, R897–R934 (2003).
[CrossRef]

2002

E. P. Burr, J. B. Song, A. J. Seeds, C. C. Button, “28 ps recovery time in an InGaAsP/InGaAsP multiple-quantum-well saturable absorber employing carrier sweepout,” J. Appl. Phys. 90, 3566–3569 (2002).
[CrossRef]

2001

Y. Takagaki, E. Wiebicke, K. H. Ploog, “Fabrication of GHz-range surface-acoustic-wave transducers on LiNbO3 using imprint technology,” Nanotechnology 13, 15–17 (2001).
[CrossRef]

1999

A. F. Morpurgo, C. M. Marcus, D. B. Robinson, “Controlled fabrication of metallic electrodes with atomic separation,” Appl. Phys. Lett. 74, 2084–2086 (1999).
[CrossRef]

Y. Zhang, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, “New optical configurations for implementing Radon-Wigner display: matrix analysis approach,” Opt. Commun. 160, 292–300 (1999).
[CrossRef]

Y. Zhang, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, “Novel implementation of the Radon-Wigner display,” Opt. Commun. 166, 21–24 (1999).
[CrossRef]

D. Dragoman, M. Dragoman, “Band-engineered semiconductor optical waveguides for integral transform implementation,” J. Appl. Phys. 85, 3409–3412 (1999).
[CrossRef]

D. Dragoman, M. Dragoman, K.-H. Brenner, “Experimental demonstration of a continuously variant fractional Fourier transformer,” Appl. Opt. 38, 4985–4989 (1999).
[CrossRef]

1998

A. W. Lohmann, D. Mendlovic, Z. Zalevsky, “Fractional transformations in optics,” Prog. Opt. 38, 263–342 (1998).
[CrossRef]

1997

M. Fatih Erden, H. M. Ozaktas, A. Sahin, D. Mendlovic, “Design of dynamically adjustable anamorphic fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997).
[CrossRef]

L. Fan, M. C. Wu, H. C. Lee, P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photon. Technol. Lett. 9, 505–507 (1997).
[CrossRef]

1996

1995

A. W. Lohmann, “A fake zoom lens for fractional Fourier experiments,” Opt. Commun. 115, 437–443 (1995).
[CrossRef]

1994

S. El Yumin, K. Komori, S. Arai, “GaInAsP/InP semiconductor vertical GRIN-lens for semiconductor optical devices,” IEEE Photon. Technol. Lett. 6, 601–603 (1994).
[CrossRef]

1991

B. Pezeshki, R. B. Apte, S. M. Lord, J. S. Harris, “Quantum well modulators for optical beam steering applications,” IEEE Photon. Technol. Lett. 3, 790–792 (1991).
[CrossRef]

1990

1984

S. Adachi, K. Oe, “Linear electro-optic effects in zincblende-type semiconductors: key properties of InGaAsP relevant to device design,” J. Appl. Phys. 56, 74–80 (1984).
[CrossRef]

Adachi, S.

S. Adachi, K. Oe, “Linear electro-optic effects in zincblende-type semiconductors: key properties of InGaAsP relevant to device design,” J. Appl. Phys. 56, 74–80 (1984).
[CrossRef]

Apte, R. B.

B. Pezeshki, R. B. Apte, S. M. Lord, J. S. Harris, “Quantum well modulators for optical beam steering applications,” IEEE Photon. Technol. Lett. 3, 790–792 (1991).
[CrossRef]

Arai, S.

S. El Yumin, K. Komori, S. Arai, “GaInAsP/InP semiconductor vertical GRIN-lens for semiconductor optical devices,” IEEE Photon. Technol. Lett. 6, 601–603 (1994).
[CrossRef]

Brenner, K.-H.

Burr, E. P.

E. P. Burr, J. B. Song, A. J. Seeds, C. C. Button, “28 ps recovery time in an InGaAsP/InGaAsP multiple-quantum-well saturable absorber employing carrier sweepout,” J. Appl. Phys. 90, 3566–3569 (2002).
[CrossRef]

Button, C. C.

E. P. Burr, J. B. Song, A. J. Seeds, C. C. Button, “28 ps recovery time in an InGaAsP/InGaAsP multiple-quantum-well saturable absorber employing carrier sweepout,” J. Appl. Phys. 90, 3566–3569 (2002).
[CrossRef]

Dalton, L. R.

L. R. Dalton, “Rational design of organic electro-optic materials,” J. Phys. Condens. Matter 15, R897–R934 (2003).
[CrossRef]

Dong, B.-Z.

Y. Zhang, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, “New optical configurations for implementing Radon-Wigner display: matrix analysis approach,” Opt. Commun. 160, 292–300 (1999).
[CrossRef]

Y. Zhang, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, “Novel implementation of the Radon-Wigner display,” Opt. Commun. 166, 21–24 (1999).
[CrossRef]

Dorsch, R. G.

Dragoman, D.

D. Dragoman, M. Dragoman, K.-H. Brenner, “Experimental demonstration of a continuously variant fractional Fourier transformer,” Appl. Opt. 38, 4985–4989 (1999).
[CrossRef]

D. Dragoman, M. Dragoman, “Band-engineered semiconductor optical waveguides for integral transform implementation,” J. Appl. Phys. 85, 3409–3412 (1999).
[CrossRef]

D. Dragoman, M. Dragoman, Advanced Optoelectronic Devices (Springer-Verlag, Berlin, 1999).
[CrossRef]

Dragoman, M.

D. Dragoman, M. Dragoman, “Band-engineered semiconductor optical waveguides for integral transform implementation,” J. Appl. Phys. 85, 3409–3412 (1999).
[CrossRef]

D. Dragoman, M. Dragoman, K.-H. Brenner, “Experimental demonstration of a continuously variant fractional Fourier transformer,” Appl. Opt. 38, 4985–4989 (1999).
[CrossRef]

D. Dragoman, M. Dragoman, Advanced Optoelectronic Devices (Springer-Verlag, Berlin, 1999).
[CrossRef]

El Yumin, S.

S. El Yumin, K. Komori, S. Arai, “GaInAsP/InP semiconductor vertical GRIN-lens for semiconductor optical devices,” IEEE Photon. Technol. Lett. 6, 601–603 (1994).
[CrossRef]

Fan, L.

L. Fan, M. C. Wu, H. C. Lee, P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photon. Technol. Lett. 9, 505–507 (1997).
[CrossRef]

Fatih Erden, M.

M. Fatih Erden, H. M. Ozaktas, A. Sahin, D. Mendlovic, “Design of dynamically adjustable anamorphic fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997).
[CrossRef]

Ferreira, C.

Grodzinski, P.

L. Fan, M. C. Wu, H. C. Lee, P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photon. Technol. Lett. 9, 505–507 (1997).
[CrossRef]

Gu, B.-Y.

Y. Zhang, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, “New optical configurations for implementing Radon-Wigner display: matrix analysis approach,” Opt. Commun. 160, 292–300 (1999).
[CrossRef]

Y. Zhang, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, “Novel implementation of the Radon-Wigner display,” Opt. Commun. 166, 21–24 (1999).
[CrossRef]

Hall, D. G.

Harris, J. S.

B. Pezeshki, R. B. Apte, S. M. Lord, J. S. Harris, “Quantum well modulators for optical beam steering applications,” IEEE Photon. Technol. Lett. 3, 790–792 (1991).
[CrossRef]

Komori, K.

S. El Yumin, K. Komori, S. Arai, “GaInAsP/InP semiconductor vertical GRIN-lens for semiconductor optical devices,” IEEE Photon. Technol. Lett. 6, 601–603 (1994).
[CrossRef]

Lee, H. C.

L. Fan, M. C. Wu, H. C. Lee, P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photon. Technol. Lett. 9, 505–507 (1997).
[CrossRef]

Lohmann, A. W.

A. W. Lohmann, D. Mendlovic, Z. Zalevsky, “Fractional transformations in optics,” Prog. Opt. 38, 263–342 (1998).
[CrossRef]

D. Mendlovic, R. G. Dorsch, A. W. Lohmann, Z. Zalevsky, C. Ferreira, “Optical illustration of a varied fractional Fourier-transform order and the Radon-Wigner display,” Appl. Opt. 35, 3925–3929 (1996).
[CrossRef] [PubMed]

A. W. Lohmann, “A fake zoom lens for fractional Fourier experiments,” Opt. Commun. 115, 437–443 (1995).
[CrossRef]

Lord, S. M.

B. Pezeshki, R. B. Apte, S. M. Lord, J. S. Harris, “Quantum well modulators for optical beam steering applications,” IEEE Photon. Technol. Lett. 3, 790–792 (1991).
[CrossRef]

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Marcus, C. M.

A. F. Morpurgo, C. M. Marcus, D. B. Robinson, “Controlled fabrication of metallic electrodes with atomic separation,” Appl. Phys. Lett. 74, 2084–2086 (1999).
[CrossRef]

Mendlovic, D.

A. W. Lohmann, D. Mendlovic, Z. Zalevsky, “Fractional transformations in optics,” Prog. Opt. 38, 263–342 (1998).
[CrossRef]

M. Fatih Erden, H. M. Ozaktas, A. Sahin, D. Mendlovic, “Design of dynamically adjustable anamorphic fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997).
[CrossRef]

D. Mendlovic, R. G. Dorsch, A. W. Lohmann, Z. Zalevsky, C. Ferreira, “Optical illustration of a varied fractional Fourier-transform order and the Radon-Wigner display,” Appl. Opt. 35, 3925–3929 (1996).
[CrossRef] [PubMed]

Morpurgo, A. F.

A. F. Morpurgo, C. M. Marcus, D. B. Robinson, “Controlled fabrication of metallic electrodes with atomic separation,” Appl. Phys. Lett. 74, 2084–2086 (1999).
[CrossRef]

Oe, K.

S. Adachi, K. Oe, “Linear electro-optic effects in zincblende-type semiconductors: key properties of InGaAsP relevant to device design,” J. Appl. Phys. 56, 74–80 (1984).
[CrossRef]

Ozaktas, H. M.

M. Fatih Erden, H. M. Ozaktas, A. Sahin, D. Mendlovic, “Design of dynamically adjustable anamorphic fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997).
[CrossRef]

Pezeshki, B.

B. Pezeshki, R. B. Apte, S. M. Lord, J. S. Harris, “Quantum well modulators for optical beam steering applications,” IEEE Photon. Technol. Lett. 3, 790–792 (1991).
[CrossRef]

Ploog, K. H.

Y. Takagaki, E. Wiebicke, K. H. Ploog, “Fabrication of GHz-range surface-acoustic-wave transducers on LiNbO3 using imprint technology,” Nanotechnology 13, 15–17 (2001).
[CrossRef]

Robinson, D. B.

A. F. Morpurgo, C. M. Marcus, D. B. Robinson, “Controlled fabrication of metallic electrodes with atomic separation,” Appl. Phys. Lett. 74, 2084–2086 (1999).
[CrossRef]

Sahin, A.

M. Fatih Erden, H. M. Ozaktas, A. Sahin, D. Mendlovic, “Design of dynamically adjustable anamorphic fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997).
[CrossRef]

Seeds, A. J.

E. P. Burr, J. B. Song, A. J. Seeds, C. C. Button, “28 ps recovery time in an InGaAsP/InGaAsP multiple-quantum-well saturable absorber employing carrier sweepout,” J. Appl. Phys. 90, 3566–3569 (2002).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Song, J. B.

E. P. Burr, J. B. Song, A. J. Seeds, C. C. Button, “28 ps recovery time in an InGaAsP/InGaAsP multiple-quantum-well saturable absorber employing carrier sweepout,” J. Appl. Phys. 90, 3566–3569 (2002).
[CrossRef]

Stegeman, G. I.

Takagaki, Y.

Y. Takagaki, E. Wiebicke, K. H. Ploog, “Fabrication of GHz-range surface-acoustic-wave transducers on LiNbO3 using imprint technology,” Nanotechnology 13, 15–17 (2001).
[CrossRef]

Wiebicke, E.

Y. Takagaki, E. Wiebicke, K. H. Ploog, “Fabrication of GHz-range surface-acoustic-wave transducers on LiNbO3 using imprint technology,” Nanotechnology 13, 15–17 (2001).
[CrossRef]

Wu, M. C.

L. Fan, M. C. Wu, H. C. Lee, P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photon. Technol. Lett. 9, 505–507 (1997).
[CrossRef]

Yang, G.-Z.

Y. Zhang, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, “New optical configurations for implementing Radon-Wigner display: matrix analysis approach,” Opt. Commun. 160, 292–300 (1999).
[CrossRef]

Y. Zhang, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, “Novel implementation of the Radon-Wigner display,” Opt. Commun. 166, 21–24 (1999).
[CrossRef]

Zalevsky, Z.

Zhang, Y.

Y. Zhang, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, “New optical configurations for implementing Radon-Wigner display: matrix analysis approach,” Opt. Commun. 160, 292–300 (1999).
[CrossRef]

Y. Zhang, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, “Novel implementation of the Radon-Wigner display,” Opt. Commun. 166, 21–24 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. F. Morpurgo, C. M. Marcus, D. B. Robinson, “Controlled fabrication of metallic electrodes with atomic separation,” Appl. Phys. Lett. 74, 2084–2086 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Fan, M. C. Wu, H. C. Lee, P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photon. Technol. Lett. 9, 505–507 (1997).
[CrossRef]

B. Pezeshki, R. B. Apte, S. M. Lord, J. S. Harris, “Quantum well modulators for optical beam steering applications,” IEEE Photon. Technol. Lett. 3, 790–792 (1991).
[CrossRef]

S. El Yumin, K. Komori, S. Arai, “GaInAsP/InP semiconductor vertical GRIN-lens for semiconductor optical devices,” IEEE Photon. Technol. Lett. 6, 601–603 (1994).
[CrossRef]

J. Appl. Phys.

D. Dragoman, M. Dragoman, “Band-engineered semiconductor optical waveguides for integral transform implementation,” J. Appl. Phys. 85, 3409–3412 (1999).
[CrossRef]

S. Adachi, K. Oe, “Linear electro-optic effects in zincblende-type semiconductors: key properties of InGaAsP relevant to device design,” J. Appl. Phys. 56, 74–80 (1984).
[CrossRef]

E. P. Burr, J. B. Song, A. J. Seeds, C. C. Button, “28 ps recovery time in an InGaAsP/InGaAsP multiple-quantum-well saturable absorber employing carrier sweepout,” J. Appl. Phys. 90, 3566–3569 (2002).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Condens. Matter

L. R. Dalton, “Rational design of organic electro-optic materials,” J. Phys. Condens. Matter 15, R897–R934 (2003).
[CrossRef]

Nanotechnology

Y. Takagaki, E. Wiebicke, K. H. Ploog, “Fabrication of GHz-range surface-acoustic-wave transducers on LiNbO3 using imprint technology,” Nanotechnology 13, 15–17 (2001).
[CrossRef]

Opt. Commun.

A. W. Lohmann, “A fake zoom lens for fractional Fourier experiments,” Opt. Commun. 115, 437–443 (1995).
[CrossRef]

Y. Zhang, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, “New optical configurations for implementing Radon-Wigner display: matrix analysis approach,” Opt. Commun. 160, 292–300 (1999).
[CrossRef]

Y. Zhang, B.-Y. Gu, B.-Z. Dong, G.-Z. Yang, “Novel implementation of the Radon-Wigner display,” Opt. Commun. 166, 21–24 (1999).
[CrossRef]

M. Fatih Erden, H. M. Ozaktas, A. Sahin, D. Mendlovic, “Design of dynamically adjustable anamorphic fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997).
[CrossRef]

Prog. Opt.

A. W. Lohmann, D. Mendlovic, Z. Zalevsky, “Fractional transformations in optics,” Prog. Opt. 38, 263–342 (1998).
[CrossRef]

Other

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

D. Dragoman, M. Dragoman, Advanced Optoelectronic Devices (Springer-Verlag, Berlin, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Dependence of scaled relative refractive-index variation Δ(t, λ) = 1010 n 0 2(t, λ)r 41(t, λ) on t for three wavelengths: 1.5 μm (solid curve), 1.33 μm (dotted curve), and 1 μm (dashed curve).

Fig. 2
Fig. 2

(a) Schematic representation of the electro-optically induced waveguide. (b) Example of an induced refractive-index profile.

Fig. 3
Fig. 3

Evolution of the output intensity of a parabolic GRIN waveguide for a decrease of AL values with 0.15π (short-dashed curve), 0.25π (dotted curve), 0.35π (dashed-dotted curve), and π/2 (long-dashed curve) from the initial value of an even multiple of π (solid curve). The long-dashed curve was scaled by 1/2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

nx=nco-nco-nclf|x|, |x|d,
Ej=E-j=Emax1-fx|j|, -NjN.
Fαuφ=expiπ/4-iα/22π sin α1/2 φx×expikncoA2 sin αu2+x2cos α-2ux,
φoutx=m=0M amψmxexpiβmL,

Metrics