Abstract

Experimental results of a modified micromachined microelectromechanical systems (MEMS) mirror for substantial enhancement of the transverse laser scanning performance of endoscopic optical coherence tomography (EOCT) are presented. Image distortion due to buckling of MEMS mirror in our previous designs was analyzed and found to be attributed to excessive internal stress of the transverse bimorph meshes. The modified MEMS mirror completely eliminates bimorph stress and the resultant buckling effect, which increases the wobbling-free angular optical actuation to greater than 37°, exceeding the transverse laser scanning requirements for EOCT and confocal endoscopy. The new optical coherence tomography (OCT) endoscope allows for two-dimensional cross-sectional imaging that covers an area of 4.2 mm × 2.8 mm (limited by scope size) and at roughly 5 frames/s instead of the previous area size of 2.9 mm × 2.8 mm and is highly suitable for noninvasive and high-resolution imaging diagnosis of epithelial lesions in vivo. EOCT images of normal rat bladders and rat bladder cancers are compared with the same cross sections acquired with conventional bench-top OCT. The results clearly demonstrate the potential of EOCT for in vivo imaging diagnosis and precise guidance for excisional biopsy of early bladder cancers.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fujimoto, “Optical coherence tomography: a new view toward biomedical imaging,” Photonics Spectra 32, 114–115 (1998).
  2. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Y. P. Chumakov, O. S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Express 1, 432–440 (1997); http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  3. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
    [CrossRef] [PubMed]
  4. Y. Pan, H. Xie, G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
    [CrossRef]
  5. T. Xie, H. Xie, G. K. Fedder, M. Zeidel, Y. Pan, “Endoscopic optical coherence tomography with a micromachined mirror,” in Second Annual International IEEE-Engineering in Medicine and Biology Society Special Topic Conference on Microtechnologies in Medicine and Biology, A. Dittmar, D. Beebe, eds. (IEEE, Piscataway, N.J., 2002), pp. 208–211.
  6. A. M. Rollins, R. Ung-arunyawee, A. Chak, C. K. Wong, K. Kobayashi, M. V. Sivak, J. A. Izatt, “Real-time in vivo image of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett. 24, 1358–1360 (1999).
    [CrossRef]
  7. T.-Q. Xie, M. L. Zeidel, Y.-T. Pan, “Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes,” Opt. Express 10, 1431–1443 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  8. T. Xie, Z. Li, M. L. Zeidel, Y. Pan, “Optical imaging diagnostics of bladder tissue with optical coherence tomography,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XII, K. E. Bartels, L. S. Bass, W. T. de Riese, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, G. M. Peavy, H.-D. Reidenbach, D. S. Robinson, U. K. Shah, L. P. Tate, E. A. Trowers, B. J. Wong, T. A. Woodward, eds. Proc. SPIE4609, 159–164 (2002).
    [CrossRef]
  9. Y.-T. Pan, J. P. Lavelle, S. Bastaky, S. Meyers, D. L. Farkas, M. Zeidel, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
    [CrossRef]
  10. T. Q. Xie, H. K. Xie, G. K. Fedder, Y. T. Pan, “Endoscopic optical coherence tomography with a new MEMS mirror,” Electron. Lett. (2003) (to be published).
    [CrossRef]

2002 (1)

2001 (2)

Y.-T. Pan, J. P. Lavelle, S. Bastaky, S. Meyers, D. L. Farkas, M. Zeidel, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
[CrossRef]

Y. Pan, H. Xie, G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
[CrossRef]

1999 (1)

1998 (1)

J. G. Fujimoto, “Optical coherence tomography: a new view toward biomedical imaging,” Photonics Spectra 32, 114–115 (1998).

1997 (2)

Bastaky, S.

Y.-T. Pan, J. P. Lavelle, S. Bastaky, S. Meyers, D. L. Farkas, M. Zeidel, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
[CrossRef]

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Bouma, B. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Chak, A.

Chumakov, Y. P.

Denisenko, A. N.

Farkas, D. L.

Y.-T. Pan, J. P. Lavelle, S. Bastaky, S. Meyers, D. L. Farkas, M. Zeidel, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
[CrossRef]

Fedder, G. K.

Y. Pan, H. Xie, G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
[CrossRef]

T. Xie, H. Xie, G. K. Fedder, M. Zeidel, Y. Pan, “Endoscopic optical coherence tomography with a micromachined mirror,” in Second Annual International IEEE-Engineering in Medicine and Biology Society Special Topic Conference on Microtechnologies in Medicine and Biology, A. Dittmar, D. Beebe, eds. (IEEE, Piscataway, N.J., 2002), pp. 208–211.

T. Q. Xie, H. K. Xie, G. K. Fedder, Y. T. Pan, “Endoscopic optical coherence tomography with a new MEMS mirror,” Electron. Lett. (2003) (to be published).
[CrossRef]

Feldchtein, F. I.

Fujimoto, J. G.

J. G. Fujimoto, “Optical coherence tomography: a new view toward biomedical imaging,” Photonics Spectra 32, 114–115 (1998).

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Gelikonov, G. V.

Gelikonov, V. M.

Gladkova, N. D.

Izatt, J. A.

Kobayashi, K.

Kuranov, R. V.

Kuznetzova, I. A.

Lavelle, J. P.

Y.-T. Pan, J. P. Lavelle, S. Bastaky, S. Meyers, D. L. Farkas, M. Zeidel, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
[CrossRef]

Li, Z.

T. Xie, Z. Li, M. L. Zeidel, Y. Pan, “Optical imaging diagnostics of bladder tissue with optical coherence tomography,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XII, K. E. Bartels, L. S. Bass, W. T. de Riese, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, G. M. Peavy, H.-D. Reidenbach, D. S. Robinson, U. K. Shah, L. P. Tate, E. A. Trowers, B. J. Wong, T. A. Woodward, eds. Proc. SPIE4609, 159–164 (2002).
[CrossRef]

Meyers, S.

Y.-T. Pan, J. P. Lavelle, S. Bastaky, S. Meyers, D. L. Farkas, M. Zeidel, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
[CrossRef]

Pan, Y.

Y. Pan, H. Xie, G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
[CrossRef]

T. Xie, H. Xie, G. K. Fedder, M. Zeidel, Y. Pan, “Endoscopic optical coherence tomography with a micromachined mirror,” in Second Annual International IEEE-Engineering in Medicine and Biology Society Special Topic Conference on Microtechnologies in Medicine and Biology, A. Dittmar, D. Beebe, eds. (IEEE, Piscataway, N.J., 2002), pp. 208–211.

T. Xie, Z. Li, M. L. Zeidel, Y. Pan, “Optical imaging diagnostics of bladder tissue with optical coherence tomography,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XII, K. E. Bartels, L. S. Bass, W. T. de Riese, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, G. M. Peavy, H.-D. Reidenbach, D. S. Robinson, U. K. Shah, L. P. Tate, E. A. Trowers, B. J. Wong, T. A. Woodward, eds. Proc. SPIE4609, 159–164 (2002).
[CrossRef]

Pan, Y. T.

T. Q. Xie, H. K. Xie, G. K. Fedder, Y. T. Pan, “Endoscopic optical coherence tomography with a new MEMS mirror,” Electron. Lett. (2003) (to be published).
[CrossRef]

Pan, Y.-T.

T.-Q. Xie, M. L. Zeidel, Y.-T. Pan, “Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes,” Opt. Express 10, 1431–1443 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

Y.-T. Pan, J. P. Lavelle, S. Bastaky, S. Meyers, D. L. Farkas, M. Zeidel, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
[CrossRef]

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Pochinko, V. V.

Rollins, A. M.

Sergeev, A. M.

Shakhov, A. V.

Shakhova, N. M.

Sivak, M. V.

Snopova, L. B.

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Streltzova, O. S.

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Ung-arunyawee, R.

Wong, C. K.

Xie, H.

Y. Pan, H. Xie, G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
[CrossRef]

T. Xie, H. Xie, G. K. Fedder, M. Zeidel, Y. Pan, “Endoscopic optical coherence tomography with a micromachined mirror,” in Second Annual International IEEE-Engineering in Medicine and Biology Society Special Topic Conference on Microtechnologies in Medicine and Biology, A. Dittmar, D. Beebe, eds. (IEEE, Piscataway, N.J., 2002), pp. 208–211.

Xie, H. K.

T. Q. Xie, H. K. Xie, G. K. Fedder, Y. T. Pan, “Endoscopic optical coherence tomography with a new MEMS mirror,” Electron. Lett. (2003) (to be published).
[CrossRef]

Xie, T.

T. Xie, Z. Li, M. L. Zeidel, Y. Pan, “Optical imaging diagnostics of bladder tissue with optical coherence tomography,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XII, K. E. Bartels, L. S. Bass, W. T. de Riese, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, G. M. Peavy, H.-D. Reidenbach, D. S. Robinson, U. K. Shah, L. P. Tate, E. A. Trowers, B. J. Wong, T. A. Woodward, eds. Proc. SPIE4609, 159–164 (2002).
[CrossRef]

T. Xie, H. Xie, G. K. Fedder, M. Zeidel, Y. Pan, “Endoscopic optical coherence tomography with a micromachined mirror,” in Second Annual International IEEE-Engineering in Medicine and Biology Society Special Topic Conference on Microtechnologies in Medicine and Biology, A. Dittmar, D. Beebe, eds. (IEEE, Piscataway, N.J., 2002), pp. 208–211.

Xie, T. Q.

T. Q. Xie, H. K. Xie, G. K. Fedder, Y. T. Pan, “Endoscopic optical coherence tomography with a new MEMS mirror,” Electron. Lett. (2003) (to be published).
[CrossRef]

Xie, T.-Q.

Zeidel, M.

Y.-T. Pan, J. P. Lavelle, S. Bastaky, S. Meyers, D. L. Farkas, M. Zeidel, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
[CrossRef]

T. Xie, H. Xie, G. K. Fedder, M. Zeidel, Y. Pan, “Endoscopic optical coherence tomography with a micromachined mirror,” in Second Annual International IEEE-Engineering in Medicine and Biology Society Special Topic Conference on Microtechnologies in Medicine and Biology, A. Dittmar, D. Beebe, eds. (IEEE, Piscataway, N.J., 2002), pp. 208–211.

Zeidel, M. L.

T.-Q. Xie, M. L. Zeidel, Y.-T. Pan, “Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes,” Opt. Express 10, 1431–1443 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

T. Xie, Z. Li, M. L. Zeidel, Y. Pan, “Optical imaging diagnostics of bladder tissue with optical coherence tomography,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XII, K. E. Bartels, L. S. Bass, W. T. de Riese, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, G. M. Peavy, H.-D. Reidenbach, D. S. Robinson, U. K. Shah, L. P. Tate, E. A. Trowers, B. J. Wong, T. A. Woodward, eds. Proc. SPIE4609, 159–164 (2002).
[CrossRef]

Med. Phys. (1)

Y.-T. Pan, J. P. Lavelle, S. Bastaky, S. Meyers, D. L. Farkas, M. Zeidel, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Photonics Spectra (1)

J. G. Fujimoto, “Optical coherence tomography: a new view toward biomedical imaging,” Photonics Spectra 32, 114–115 (1998).

Science (1)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997).
[CrossRef] [PubMed]

Other (3)

T. Xie, H. Xie, G. K. Fedder, M. Zeidel, Y. Pan, “Endoscopic optical coherence tomography with a micromachined mirror,” in Second Annual International IEEE-Engineering in Medicine and Biology Society Special Topic Conference on Microtechnologies in Medicine and Biology, A. Dittmar, D. Beebe, eds. (IEEE, Piscataway, N.J., 2002), pp. 208–211.

T. Xie, Z. Li, M. L. Zeidel, Y. Pan, “Optical imaging diagnostics of bladder tissue with optical coherence tomography,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XII, K. E. Bartels, L. S. Bass, W. T. de Riese, K. W. Gregory, A. Katzir, N. Kollias, M. D. Lucroy, R. S. Malek, G. M. Peavy, H.-D. Reidenbach, D. S. Robinson, U. K. Shah, L. P. Tate, E. A. Trowers, B. J. Wong, T. A. Woodward, eds. Proc. SPIE4609, 159–164 (2002).
[CrossRef]

T. Q. Xie, H. K. Xie, G. K. Fedder, Y. T. Pan, “Endoscopic optical coherence tomography with a new MEMS mirror,” Electron. Lett. (2003) (to be published).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of EOCT with a MEMS mirror. BBS, broadband light source; LD, aiming laser; PD, photodiode; CM, fiber-optic collimator.

Fig. 2
Fig. 2

SEM of an old MEMS mirror.

Fig. 3
Fig. 3

Characteristic curve of MEMS mirror.

Fig. 4
Fig. 4

SEM of the modified MEMS mirror.

Fig. 5
Fig. 5

Characteristic curve of MEMS mirror.

Fig. 6
Fig. 6

Rabbit bladder imaged ex vivo by EOCT (A) with old MEMS mirror and (B) modified MEMS mirror. Image size: 3.6 mm × 2 mm (A) and 4.3 mm × 2 mm (B). U, urothelium; LP, lamina propria; M, muscular layer. Artifact due to mirror wobbling is noticeable in (A).

Fig. 7
Fig. 7

Rat bladder cancer with larger papillary hyperplasia imaged with (A) bench-top OCT and (B) EOCT. Image size: (A) 6 mm × 2 mm and (B) 3.3 mm × 2 mm.

Fig. 8
Fig. 8

Rat bladder cancer with early papillary hyperplasia imaged with (A) bench-top OCT and (B) EOCT. Image size: (A) 6 mm × 2 mm and (B) 3.3 mm × 2 mm.

Metrics