Abstract

Near-infrared (NIR) spectroscopic imaging technology provides a new modality for measuring changes in total hemoglobin concentration (HbT) and blood oxygen saturation (SO2) in human tissue. The technology can be used to detect breast cancer because cancers may cause greater vascularization and greater oxygen consumption than in normal tissue. Based on the NIR technology, ViOptix, Inc., has developed an optical device that provides two-dimensional mapping of HbT and SO2 in human tissue. As an adjunctive tool to mammography, the device was preliminarily tested in a clinical trial with 50 mammogram-positive patients at the Massachusetts General Hospital. The results of the clinical trial demonstrate that the device can reach as much as 92% diagnostic sensitivity and 67% specificity in detecting ductal carcinoma. These results may indicate that the NIR technology can potentially be used as an adjunct to mammography for breast cancer detection to reduce the number of biopsies performed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Fletcher, “Breast cancer screening among women in their forties: an overview of the issues,” J. Natl. Cancer Inst. Monogr. 22, 5–9 (1997).
    [PubMed]
  2. C. P. Goscin, C. G. Berman, R. A. Clark, “Magnetic resonance imaging of the breast,” Cancer Control 8, 399–406 (2001).
    [PubMed]
  3. A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
    [CrossRef] [PubMed]
  4. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
    [CrossRef] [PubMed]
  5. P. L. Olive, J. P. Banath, R. E. Durand, “The range of oxygenation in SiHa tumor xenografts,” Radiat. Res. 158, 159–166 (2002).
    [CrossRef] [PubMed]
  6. P. Vaupel, O. Thews, M. Hoeckel, “Treatment resistance of solid tumors: role of hypoxia and anemia,” Med. Oncol. 18, 243–259 (2001).
    [CrossRef]
  7. E. L. Heffer, S. Fantini, “Quantitative oximetry of breast tumors: a near-infrared method that identifies two optimal wavelengths for each tumor,” Appl. Opt. 41, 3827–3839 (2002).
    [CrossRef] [PubMed]
  8. B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
    [CrossRef] [PubMed]
  9. B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved soectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
    [CrossRef] [PubMed]
  10. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
    [CrossRef] [PubMed]
  11. T. Tamura, H. Eda, M. Takada, T. Kubodera, “New instrument for monitoring hemoglobin oxygenation,” Adv. Exp. Med. Biol. 248, 103–107 (1990).
    [CrossRef]
  12. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
    [CrossRef] [PubMed]
  13. T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  14. H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
    [CrossRef] [PubMed]
  15. H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, R. P. Mason, “Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy,” Appl. Opt. 39, 5231–5243 (2000).
    [CrossRef]
  16. P. W. Vaupel, S. Frinak, H. I. Bicher, “Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma,” Cancer Res. 41, 2008–2013 (1981).
    [PubMed]
  17. F. Kallinowski, K. H. Schlenger, S. Runkel, M. Kloes, M. Stohrer, P. Okunieff, P. Vaupel, “Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts,” Cancer Res. 49, 3759–3764 (1989).
    [PubMed]
  18. D. M. Brized, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tulor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–843 (1996).
  19. H. D. Sostman, S. Rockwell, A. L. Sylva, D. Madwed, G. Cofer, H. C. Charles, R. Negro-Villar, D. Moore, “Evaluation of trodes, optical spectrometry, radiosensitivity, and MRS,” Magn. Reson. Med. 20, 253–267 (1991).
    [CrossRef] [PubMed]
  20. R. G. Steen, K. Kitagishi, K. Morgan, “In vivo measurement of tumor blood oxygenation by near-infrared spectroscopy: immediate effects of pentobarbital overdose of carmustine treatment,” J. Neuro-Oncol. 22, 209–220 (1994).
    [CrossRef]
  21. F. Seinberg, H. J. Rohrborn, T. Otto, K. M. Scheufler, C. Streffer, “NIR reflection measurements of hemoglobin and cytochrome aa3 in healthy tissue and tumors,” Adv. Exp. Med. Biol. 428, 69–77 (1997).
    [CrossRef]
  22. E. L. Hull, D. L. Conover, T. H. Foster, “Carbogen-induced changes in rat mammary tumor oxygenation reported by near-infrared spectroscopy,” Br. J. Cancer 79, 1709–1716 (1999).
    [CrossRef] [PubMed]
  23. J. Welch, M. J. C. van Gemert, eds., Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995), pp. 335–339.

2002 (3)

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

E. L. Heffer, S. Fantini, “Quantitative oximetry of breast tumors: a near-infrared method that identifies two optimal wavelengths for each tumor,” Appl. Opt. 41, 3827–3839 (2002).
[CrossRef] [PubMed]

P. L. Olive, J. P. Banath, R. E. Durand, “The range of oxygenation in SiHa tumor xenografts,” Radiat. Res. 158, 159–166 (2002).
[CrossRef] [PubMed]

2001 (2)

P. Vaupel, O. Thews, M. Hoeckel, “Treatment resistance of solid tumors: role of hypoxia and anemia,” Med. Oncol. 18, 243–259 (2001).
[CrossRef]

C. P. Goscin, C. G. Berman, R. A. Clark, “Magnetic resonance imaging of the breast,” Cancer Control 8, 399–406 (2001).
[PubMed]

2000 (2)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, R. P. Mason, “Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy,” Appl. Opt. 39, 5231–5243 (2000).
[CrossRef]

1999 (1)

E. L. Hull, D. L. Conover, T. H. Foster, “Carbogen-induced changes in rat mammary tumor oxygenation reported by near-infrared spectroscopy,” Br. J. Cancer 79, 1709–1716 (1999).
[CrossRef] [PubMed]

1997 (2)

F. Seinberg, H. J. Rohrborn, T. Otto, K. M. Scheufler, C. Streffer, “NIR reflection measurements of hemoglobin and cytochrome aa3 in healthy tissue and tumors,” Adv. Exp. Med. Biol. 428, 69–77 (1997).
[CrossRef]

S. W. Fletcher, “Breast cancer screening among women in their forties: an overview of the issues,” J. Natl. Cancer Inst. Monogr. 22, 5–9 (1997).
[PubMed]

1996 (1)

D. M. Brized, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tulor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–843 (1996).

1995 (1)

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[CrossRef] [PubMed]

1994 (1)

R. G. Steen, K. Kitagishi, K. Morgan, “In vivo measurement of tumor blood oxygenation by near-infrared spectroscopy: immediate effects of pentobarbital overdose of carmustine treatment,” J. Neuro-Oncol. 22, 209–220 (1994).
[CrossRef]

1992 (1)

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

1991 (2)

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

H. D. Sostman, S. Rockwell, A. L. Sylva, D. Madwed, G. Cofer, H. C. Charles, R. Negro-Villar, D. Moore, “Evaluation of trodes, optical spectrometry, radiosensitivity, and MRS,” Magn. Reson. Med. 20, 253–267 (1991).
[CrossRef] [PubMed]

1990 (1)

T. Tamura, H. Eda, M. Takada, T. Kubodera, “New instrument for monitoring hemoglobin oxygenation,” Adv. Exp. Med. Biol. 248, 103–107 (1990).
[CrossRef]

1989 (1)

F. Kallinowski, K. H. Schlenger, S. Runkel, M. Kloes, M. Stohrer, P. Okunieff, P. Vaupel, “Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts,” Cancer Res. 49, 3759–3764 (1989).
[PubMed]

1988 (3)

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved soectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

1981 (1)

P. W. Vaupel, S. Frinak, H. I. Bicher, “Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma,” Cancer Res. 41, 2008–2013 (1981).
[PubMed]

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Banath, J. P.

P. L. Olive, J. P. Banath, R. E. Durand, “The range of oxygenation in SiHa tumor xenografts,” Radiat. Res. 158, 159–166 (2002).
[CrossRef] [PubMed]

Bean, J. M.

D. M. Brized, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tulor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–843 (1996).

Berger, A. J.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

Berman, C. G.

C. P. Goscin, C. G. Berman, R. A. Clark, “Magnetic resonance imaging of the breast,” Cancer Control 8, 399–406 (2001).
[PubMed]

Bevilacqua, F.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

Bicher, H. I.

P. W. Vaupel, S. Frinak, H. I. Bicher, “Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma,” Cancer Res. 41, 2008–2013 (1981).
[PubMed]

Boretsky, R.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Brized, D. M.

D. M. Brized, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tulor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–843 (1996).

Butler, J.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Cerussi, A.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Cerussi, A. E.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

Chance, B.

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[CrossRef] [PubMed]

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved soectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Charles, H. C.

H. D. Sostman, S. Rockwell, A. L. Sylva, D. Madwed, G. Cofer, H. C. Charles, R. Negro-Villar, D. Moore, “Evaluation of trodes, optical spectrometry, radiosensitivity, and MRS,” Magn. Reson. Med. 20, 253–267 (1991).
[CrossRef] [PubMed]

Clark, R. A.

C. P. Goscin, C. G. Berman, R. A. Clark, “Magnetic resonance imaging of the breast,” Cancer Control 8, 399–406 (2001).
[PubMed]

Cofer, G.

H. D. Sostman, S. Rockwell, A. L. Sylva, D. Madwed, G. Cofer, H. C. Charles, R. Negro-Villar, D. Moore, “Evaluation of trodes, optical spectrometry, radiosensitivity, and MRS,” Magn. Reson. Med. 20, 253–267 (1991).
[CrossRef] [PubMed]

Cohen, P.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Conover, D. L.

E. L. Hull, D. L. Conover, T. H. Foster, “Carbogen-induced changes in rat mammary tumor oxygenation reported by near-infrared spectroscopy,” Br. J. Cancer 79, 1709–1716 (1999).
[CrossRef] [PubMed]

Constantinescu, A.

Cope, M.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Delpy, D. T.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Dewhirst, M. W.

D. M. Brized, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tulor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–843 (1996).

Durand, R. E.

P. L. Olive, J. P. Banath, R. E. Durand, “The range of oxygenation in SiHa tumor xenografts,” Radiat. Res. 158, 159–166 (2002).
[CrossRef] [PubMed]

Eda, H.

T. Tamura, H. Eda, M. Takada, T. Kubodera, “New instrument for monitoring hemoglobin oxygenation,” Adv. Exp. Med. Biol. 248, 103–107 (1990).
[CrossRef]

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Fantini, S.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Finander, M.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Fletcher, S. W.

S. W. Fletcher, “Breast cancer screening among women in their forties: an overview of the issues,” J. Natl. Cancer Inst. Monogr. 22, 5–9 (1997).
[PubMed]

Foster, T. H.

E. L. Hull, D. L. Conover, T. H. Foster, “Carbogen-induced changes in rat mammary tumor oxygenation reported by near-infrared spectroscopy,” Br. J. Cancer 79, 1709–1716 (1999).
[CrossRef] [PubMed]

Fountain, M.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved soectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Frinak, S.

P. W. Vaupel, S. Frinak, H. I. Bicher, “Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma,” Cancer Res. 41, 2008–2013 (1981).
[PubMed]

Goscin, C. P.

C. P. Goscin, C. G. Berman, R. A. Clark, “Magnetic resonance imaging of the breast,” Cancer Control 8, 399–406 (2001).
[PubMed]

Greenfeld, R.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved soectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Harrelson, J. M.

D. M. Brized, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tulor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–843 (1996).

Heffer, E. L.

Hielscher, A. H.

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[CrossRef] [PubMed]

Hoeckel, M.

P. Vaupel, O. Thews, M. Hoeckel, “Treatment resistance of solid tumors: role of hypoxia and anemia,” Med. Oncol. 18, 243–259 (2001).
[CrossRef]

Holcombe, R. F.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

Holtom, G.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved soectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Hsiang, D.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

Hull, E. L.

E. L. Hull, D. L. Conover, T. H. Foster, “Carbogen-induced changes in rat mammary tumor oxygenation reported by near-infrared spectroscopy,” Br. J. Cancer 79, 1709–1716 (1999).
[CrossRef] [PubMed]

Jacques, S. L.

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[CrossRef] [PubMed]

Jakubowski, D.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

Jiang, X.

Kallinowski, F.

F. Kallinowski, K. H. Schlenger, S. Runkel, M. Kloes, M. Stohrer, P. Okunieff, P. Vaupel, “Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts,” Cancer Res. 49, 3759–3764 (1989).
[PubMed]

Kaufmann, K.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Kent, J.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved soectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Kitagishi, K.

R. G. Steen, K. Kitagishi, K. Morgan, “In vivo measurement of tumor blood oxygenation by near-infrared spectroscopy: immediate effects of pentobarbital overdose of carmustine treatment,” J. Neuro-Oncol. 22, 209–220 (1994).
[CrossRef]

Kloes, M.

F. Kallinowski, K. H. Schlenger, S. Runkel, M. Kloes, M. Stohrer, P. Okunieff, P. Vaupel, “Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts,” Cancer Res. 49, 3759–3764 (1989).
[PubMed]

Kubodera, T.

T. Tamura, H. Eda, M. Takada, T. Kubodera, “New instrument for monitoring hemoglobin oxygenation,” Adv. Exp. Med. Biol. 248, 103–107 (1990).
[CrossRef]

Lanning, R.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Layfield, L. J.

D. M. Brized, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tulor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–843 (1996).

Leigh, J.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Leigh, J. S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Levy, W.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Liu, H.

H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, R. P. Mason, “Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy,” Appl. Opt. 39, 5231–5243 (2000).
[CrossRef]

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[CrossRef] [PubMed]

Madwed, D.

H. D. Sostman, S. Rockwell, A. L. Sylva, D. Madwed, G. Cofer, H. C. Charles, R. Negro-Villar, D. Moore, “Evaluation of trodes, optical spectrometry, radiosensitivity, and MRS,” Magn. Reson. Med. 20, 253–267 (1991).
[CrossRef] [PubMed]

Maris, M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Mason, R. P.

McCully, K.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved soectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Miyake, H.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Moore, D.

H. D. Sostman, S. Rockwell, A. L. Sylva, D. Madwed, G. Cofer, H. C. Charles, R. Negro-Villar, D. Moore, “Evaluation of trodes, optical spectrometry, radiosensitivity, and MRS,” Magn. Reson. Med. 20, 253–267 (1991).
[CrossRef] [PubMed]

Morgan, K.

R. G. Steen, K. Kitagishi, K. Morgan, “In vivo measurement of tumor blood oxygenation by near-infrared spectroscopy: immediate effects of pentobarbital overdose of carmustine treatment,” J. Neuro-Oncol. 22, 209–220 (1994).
[CrossRef]

Negro-Villar, R.

H. D. Sostman, S. Rockwell, A. L. Sylva, D. Madwed, G. Cofer, H. C. Charles, R. Negro-Villar, D. Moore, “Evaluation of trodes, optical spectrometry, radiosensitivity, and MRS,” Magn. Reson. Med. 20, 253–267 (1991).
[CrossRef] [PubMed]

Nioka, S.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved soectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Okunieff, P.

F. Kallinowski, K. H. Schlenger, S. Runkel, M. Kloes, M. Stohrer, P. Okunieff, P. Vaupel, “Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts,” Cancer Res. 49, 3759–3764 (1989).
[PubMed]

Olive, P. L.

P. L. Olive, J. P. Banath, R. E. Durand, “The range of oxygenation in SiHa tumor xenografts,” Radiat. Res. 158, 159–166 (2002).
[CrossRef] [PubMed]

Otto, T.

F. Seinberg, H. J. Rohrborn, T. Otto, K. M. Scheufler, C. Streffer, “NIR reflection measurements of hemoglobin and cytochrome aa3 in healthy tissue and tumors,” Adv. Exp. Med. Biol. 428, 69–77 (1997).
[CrossRef]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Prosnitz, L. R.

D. M. Brized, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tulor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–843 (1996).

Rockwell, S.

H. D. Sostman, S. Rockwell, A. L. Sylva, D. Madwed, G. Cofer, H. C. Charles, R. Negro-Villar, D. Moore, “Evaluation of trodes, optical spectrometry, radiosensitivity, and MRS,” Magn. Reson. Med. 20, 253–267 (1991).
[CrossRef] [PubMed]

Rohrborn, H. J.

F. Seinberg, H. J. Rohrborn, T. Otto, K. M. Scheufler, C. Streffer, “NIR reflection measurements of hemoglobin and cytochrome aa3 in healthy tissue and tumors,” Adv. Exp. Med. Biol. 428, 69–77 (1997).
[CrossRef]

Runkel, S.

F. Kallinowski, K. H. Schlenger, S. Runkel, M. Kloes, M. Stohrer, P. Okunieff, P. Vaupel, “Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts,” Cancer Res. 49, 3759–3764 (1989).
[PubMed]

Scheufler, K. M.

F. Seinberg, H. J. Rohrborn, T. Otto, K. M. Scheufler, C. Streffer, “NIR reflection measurements of hemoglobin and cytochrome aa3 in healthy tissue and tumors,” Adv. Exp. Med. Biol. 428, 69–77 (1997).
[CrossRef]

Schlenger, K. H.

F. Kallinowski, K. H. Schlenger, S. Runkel, M. Kloes, M. Stohrer, P. Okunieff, P. Vaupel, “Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts,” Cancer Res. 49, 3759–3764 (1989).
[PubMed]

Scully, S. P.

D. M. Brized, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tulor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–843 (1996).

Seinberg, F.

F. Seinberg, H. J. Rohrborn, T. Otto, K. M. Scheufler, C. Streffer, “NIR reflection measurements of hemoglobin and cytochrome aa3 in healthy tissue and tumors,” Adv. Exp. Med. Biol. 428, 69–77 (1997).
[CrossRef]

Sevick, E. M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Shah, N.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Smith, D. S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Song, Y.

Sostman, H. D.

H. D. Sostman, S. Rockwell, A. L. Sylva, D. Madwed, G. Cofer, H. C. Charles, R. Negro-Villar, D. Moore, “Evaluation of trodes, optical spectrometry, radiosensitivity, and MRS,” Magn. Reson. Med. 20, 253–267 (1991).
[CrossRef] [PubMed]

Steen, R. G.

R. G. Steen, K. Kitagishi, K. Morgan, “In vivo measurement of tumor blood oxygenation by near-infrared spectroscopy: immediate effects of pentobarbital overdose of carmustine treatment,” J. Neuro-Oncol. 22, 209–220 (1994).
[CrossRef]

Stohrer, M.

F. Kallinowski, K. H. Schlenger, S. Runkel, M. Kloes, M. Stohrer, P. Okunieff, P. Vaupel, “Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts,” Cancer Res. 49, 3759–3764 (1989).
[PubMed]

Streffer, C.

F. Seinberg, H. J. Rohrborn, T. Otto, K. M. Scheufler, C. Streffer, “NIR reflection measurements of hemoglobin and cytochrome aa3 in healthy tissue and tumors,” Adv. Exp. Med. Biol. 428, 69–77 (1997).
[CrossRef]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Sylva, A. L.

H. D. Sostman, S. Rockwell, A. L. Sylva, D. Madwed, G. Cofer, H. C. Charles, R. Negro-Villar, D. Moore, “Evaluation of trodes, optical spectrometry, radiosensitivity, and MRS,” Magn. Reson. Med. 20, 253–267 (1991).
[CrossRef] [PubMed]

Takada, M.

T. Tamura, H. Eda, M. Takada, T. Kubodera, “New instrument for monitoring hemoglobin oxygenation,” Adv. Exp. Med. Biol. 248, 103–107 (1990).
[CrossRef]

Tamura, T.

T. Tamura, H. Eda, M. Takada, T. Kubodera, “New instrument for monitoring hemoglobin oxygenation,” Adv. Exp. Med. Biol. 248, 103–107 (1990).
[CrossRef]

Thews, O.

P. Vaupel, O. Thews, M. Hoeckel, “Treatment resistance of solid tumors: role of hypoxia and anemia,” Med. Oncol. 18, 243–259 (2001).
[CrossRef]

Tittel, F. K.

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[CrossRef] [PubMed]

Tromberg, B. J.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Vaupel, P.

P. Vaupel, O. Thews, M. Hoeckel, “Treatment resistance of solid tumors: role of hypoxia and anemia,” Med. Oncol. 18, 243–259 (2001).
[CrossRef]

F. Kallinowski, K. H. Schlenger, S. Runkel, M. Kloes, M. Stohrer, P. Okunieff, P. Vaupel, “Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts,” Cancer Res. 49, 3759–3764 (1989).
[PubMed]

Vaupel, P. W.

P. W. Vaupel, S. Frinak, H. I. Bicher, “Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma,” Cancer Res. 41, 2008–2013 (1981).
[PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Worden, K. L.

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Yoshioka, H.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Young, M.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol. (2)

T. Tamura, H. Eda, M. Takada, T. Kubodera, “New instrument for monitoring hemoglobin oxygenation,” Adv. Exp. Med. Biol. 248, 103–107 (1990).
[CrossRef]

F. Seinberg, H. J. Rohrborn, T. Otto, K. M. Scheufler, C. Streffer, “NIR reflection measurements of hemoglobin and cytochrome aa3 in healthy tissue and tumors,” Adv. Exp. Med. Biol. 428, 69–77 (1997).
[CrossRef]

Anal. Biochem. (2)

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved soectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Appl. Opt. (2)

Br. J. Cancer (1)

E. L. Hull, D. L. Conover, T. H. Foster, “Carbogen-induced changes in rat mammary tumor oxygenation reported by near-infrared spectroscopy,” Br. J. Cancer 79, 1709–1716 (1999).
[CrossRef] [PubMed]

Cancer Control (1)

C. P. Goscin, C. G. Berman, R. A. Clark, “Magnetic resonance imaging of the breast,” Cancer Control 8, 399–406 (2001).
[PubMed]

Cancer Res. (3)

P. W. Vaupel, S. Frinak, H. I. Bicher, “Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma,” Cancer Res. 41, 2008–2013 (1981).
[PubMed]

F. Kallinowski, K. H. Schlenger, S. Runkel, M. Kloes, M. Stohrer, P. Okunieff, P. Vaupel, “Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts,” Cancer Res. 49, 3759–3764 (1989).
[PubMed]

D. M. Brized, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, M. W. Dewhirst, “Tulor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res. 56, 941–843 (1996).

J. Biomed. Opt. (1)

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7, 60–71 (2002).
[CrossRef] [PubMed]

J. Natl. Cancer Inst. Monogr. (1)

S. W. Fletcher, “Breast cancer screening among women in their forties: an overview of the issues,” J. Natl. Cancer Inst. Monogr. 22, 5–9 (1997).
[PubMed]

J. Neuro-Oncol. (1)

R. G. Steen, K. Kitagishi, K. Morgan, “In vivo measurement of tumor blood oxygenation by near-infrared spectroscopy: immediate effects of pentobarbital overdose of carmustine treatment,” J. Neuro-Oncol. 22, 209–220 (1994).
[CrossRef]

Magn. Reson. Med. (1)

H. D. Sostman, S. Rockwell, A. L. Sylva, D. Madwed, G. Cofer, H. C. Charles, R. Negro-Villar, D. Moore, “Evaluation of trodes, optical spectrometry, radiosensitivity, and MRS,” Magn. Reson. Med. 20, 253–267 (1991).
[CrossRef] [PubMed]

Med. Oncol. (1)

P. Vaupel, O. Thews, M. Hoeckel, “Treatment resistance of solid tumors: role of hypoxia and anemia,” Med. Oncol. 18, 243–259 (2001).
[CrossRef]

Med. Phys. (2)

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

H. Liu, A. H. Hielscher, F. K. Tittel, S. L. Jacques, B. Chance, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[CrossRef] [PubMed]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[CrossRef] [PubMed]

Radiat. Res. (1)

P. L. Olive, J. P. Banath, R. E. Durand, “The range of oxygenation in SiHa tumor xenografts,” Radiat. Res. 158, 159–166 (2002).
[CrossRef] [PubMed]

Other (1)

J. Welch, M. J. C. van Gemert, eds., Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995), pp. 335–339.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) The P-Scan optical device consists of an optical probe and an embedded personal computer with a monitor. Also shown are the PC’s mouse, wireless keyboard, and wireless keyboard receiver. (b) The P-Scan’s probe.

Fig. 2
Fig. 2

Source-detector matrix of the P-Scan device and the mapping pixels.

Fig. 3
Fig. 3

HbT and SO2 mappings shown on the device screen at a mammogram-positive position for one patient. The resolution is 0.8 cm.

Fig. 4
Fig. 4

(a) Average of HbT defined in Eqs. (9) for all 50 patients who took part in the clinical study. (b) The same average but of SO2. ×, invasive DC (9); +, DCIS (3); ○, highly unusual benign (5); △, common benign (31); ◇, no biopsy (2); □, normal (50).

Fig. 5
Fig. 5

Average STDs defined in Eqs. (9) of (a) HbT and (b) SO2, for all 50 patients. ×, invasive DC (9); +, DCIS (3); ○, highly unusual benign (5); △, common benign (31); ◇, no biopsy (2); □, normal (50).

Fig. 6
Fig. 6

(a) Relative average HbT for all 50 patients in the study. (b) Same as (a) but for SO2. (c) Scatter plot of the relative average HbT versus that of SO2. ×, invasive DC (9); +, DCIS (3); ○, highly unusual benign (5); △, common benign (31); ◇, no biopsy (2); □, normal (50).

Fig. 7
Fig. 7

Relative average standard deviations of (a) HbT and (b) SO2. (c) Scatter plot of the relative average STD of HbT versus that of SO2. (d) Enlargement of the small region near the origin in (c). ×, invasive DC (9); +, DCIS (3); ○, highly unusual benign (5); △, common benign (31); ◇, no biopsy (2); □, normal (50).

Fig. 8
Fig. 8

Contrast in (a) HbT and (b) SO2, at all positions of anomalies for each subject. ×, invasive DC (9); +, DCIS (3); ○, highly unusual benign (5); △, common benign (31); ◇, no biopsy (2).

Fig. 9
Fig. 9

Contrast-normalized average of (a) HbT and (b) SO2. (c) Scatter plot for these two quantities. ×, invasive DC (9); +, DCIS (3); ○, highly unusual benign (5); △, common benign (31); ◇, no biopsy (2).

Fig. 10
Fig. 10

Contrast-normalized average STD of (a) HbT and (b) SO2, over all anomalous positions for each subject. (c) Scatter plot of the contrast-normalized average STD of HbT versus that of SO2. (d) Enlargement of the region outlined by the square in (c). ×, invasive DC (9); +, DCIS (3); ○, highly unusual benign (5); △, common benign (31); ◇, no biopsy (2).

Tables (1)

Tables Icon

Table 1 Adjunctive Diagnostic Accuracies of the P-Scan Device for DC Detection, When the Criterion in Inequality (11), (12), or (15) is Applieda

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

USi, Dj=C4πD1r1exp-μeffr1-1r2exp-μeffr2,
ΩSi, Dj; Sk, Dl=logUSi, DjUSk, Dl.
Ω=m=0Mn=0N amnμs-2mμeffn,
μai, j=½μarow i+μacolumn j,μsi, j=½μs row i+μs column j, i, j=1,, 4.
μaλεHbλCHb+εHbOλCHbO,
HbT=CHb+CHbO, SO2=CHbOCHb+CHbO.
r=μaλ1/μaλ2.
SO2=rεHbλ2-εHbλ1rεHbλ2-εHbOλ2-εHbλ1-εHbOλ1,HbT=εHbλ2μaλ1-εHbλ1μaλ2SO2εHbOλ1εHbλ2-εHbλ1εHbOλ2.
ξnorm=1nnormi=1nnorm ξi, ξsusp=1nsuspii=1nsusp ξi, ξ=HbT, SO2, σHbT, σSO2,
ξj*=ξjξnorm, ξ=HbT, SO2, σHbT, σSO2,
HbTsusp*>1 or SO2susp*>1.
σHbTsusp*>1 or σSO2susp*>1.
ΔHbT=HbTmax-HbTmin, ΔSO2=SO2max-SO2min.
ξ=ξΔHbTξ=HbT, σHbTξΔSO2ξ=SO2, σSO2.
σHbT>0.3 or σSO2>0.3.

Metrics