Abstract

We used a flow cytometer together with an intensified CCD camera to record spatially resolved light scattering from micrometer-sized single particles and single oriented particle agglomerates. Experimental differential cross sections of an oriented dumbbell made from two identical polystyrene spheres were compared with theoretical values calculated within the discrete dipole approximation, and good agreement was achieved. Furthermore, characteristic two-dimensional patterns of the scattered-light intensity were recorded for single blood cells, yielding information on the cells’ shape and volume. Besides flow cytometry, we observed and analyzed differential light scatter of particle clusters of known size, shape, and orientation located within an optical trap.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Holler, J.-C. Auger, B. Stout, Y. Pan, J. R. Bottiger, R. K. Chang, G. Videen, “Observations and calculations of light scattering from clusters of spheres,” Appl. Opt. 39, 6873–6887 (2000).
    [CrossRef]
  2. A. L. Koch, E. Ehrenfeld, “The size and shape of bacteria by light scattering measurements,” Biochim. Biophys. Acta 165, 262–273 (1968).
    [CrossRef] [PubMed]
  3. P. J. Wyatt, “Identification of bacteria by differential light scattering,” Nature 221, 1257–1258 (1969).
    [CrossRef] [PubMed]
  4. A. Brunsting, P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14, 439–453 (1974).
    [CrossRef] [PubMed]
  5. S. V. Tsinopoulos, E. J. Sellountos, D. Polyzos, “Light scattering by aggregated red blood cells,” Appl. Opt. 41, 1408–1417 (2002).
    [CrossRef] [PubMed]
  6. M. R. Melamed, T. Lindmo, M. L. Mendelsohn, Flow Cytometry and Sorting, 2nd ed. (Wiley, New York, 1990).
  7. B. G. de Grooth, L. W. M. M. Terstappen, G. J. Puppels, J. Greve, “Light-scattering polarization measurements as a new parameter in flow cytometry,” Cytometry 8, 539–544 (1987).
    [CrossRef] [PubMed]
  8. M. C. Benson, D. C. McDougal, D. S. Coffey, “The application of perpendicular and forward light scatter to access nuclear and cellular morphology,” Cytometry 5, 515–522 (1984).
    [CrossRef] [PubMed]
  9. O. D. Laerum, R. Bjerknes, Flow Cytometry in Hematology (Academic, London, 1992).
  10. A. G. Hoekstra, P. M. A. Sloot, “Biophysical and biomedical applications of nonspherical scattering,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 585–673.
    [CrossRef]
  11. G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21, 1297–1304 (1975).
    [PubMed]
  12. H. W. Schrader, W. G. Eisert, “High resolution particle sizing using the combination of time-of-flight and light-scattering measurements,” Appl. Opt. 25, 4396–4401 (1986).
    [CrossRef] [PubMed]
  13. V. P. Maltsev, “Scanning flow cytometry for individual particle analysis,” Rev. Sci. Instrum. 71, 243–255 (2000).
    [CrossRef]
  14. A. N. Shvalov, J. T. Soini, I. V. Surovtsev, G. V. Kochneva, G. F. Sivolobova, A. K. Petrov, V. P. Maltsev, “Individual Escherichia coli cells studies from light scattering with the scanning flow cytometer,” Cytometry 41, 41–45 (2000).
    [CrossRef] [PubMed]
  15. A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, V. P. Maltsev, “Particle classification from light scattering with the scanning flow cytometer,” Cytometry 37, 215–220 (1999).
    [CrossRef] [PubMed]
  16. R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. de Grooth, J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35, 729–734 (1996).
    [CrossRef] [PubMed]
  17. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [CrossRef]
  18. P. J. Flatau, K. A. Fuller, D. W. Mackowski, “Scattering by two spheres in contact: comparison between discrete-dipole approximation and modal analysis,” Appl. Opt. 32, 3302–3305 (1993).
    [CrossRef] [PubMed]
  19. C. Gohlke, “Laser-Durchflusszytometer zur winkelaufgelösten Beobachtung der Lichtstreuung und zum empfindlichen Fluoreszenznachweis einzelner (Blut-) Zellen,” Ph.D. dissertation (Fachbereich Physik der Freie Universität Berlin, Berlin, 1997).
  20. V. Ost, J. Neukammer, H. Rinneberg, “Flow cytometric differentiation of erythrocytes and leukocytes in dilute whole blood by light scattering,” Cytometry 32, 191–197 (1998).
    [CrossRef] [PubMed]
  21. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  22. Y. R. Kim, L. Ornstein, “Isovolumetric sphering of erythrocytes for more accurate and precise cell volume measurement by flow cytometry,” Cytometry 3, 419–427 (1983).
    [CrossRef] [PubMed]
  23. J. A. Lock, J. T. Hodges, “Far-field scattering of an axisymmetric laser beam of arbitrary profile by an on-axis spherical particle,” Appl. Opt. 35, 4283–4290 (1996).
    [CrossRef] [PubMed]
  24. G. Gouesbet, J. A. Lock, G. Gréhan, “Partial-wave representations of laser beams for use in light-scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).
    [CrossRef] [PubMed]
  25. D. H. Tycko, M. H. Metz, E. A. Epstein, A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. Opt. 24, 1355–1365 (1985).
    [CrossRef] [PubMed]
  26. C. Lentner, ed., Wissenschaftliche Tabellen Geigy, Teilband Hämatologie und Humangenetik, 8 Auflage (CIBA-GEIGY, Basel, Switzerland, 1979), p. 188.
  27. A. Dunn, C. Smithpeter, A. J. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).
    [CrossRef] [PubMed]

2002 (1)

2000 (3)

S. Holler, J.-C. Auger, B. Stout, Y. Pan, J. R. Bottiger, R. K. Chang, G. Videen, “Observations and calculations of light scattering from clusters of spheres,” Appl. Opt. 39, 6873–6887 (2000).
[CrossRef]

V. P. Maltsev, “Scanning flow cytometry for individual particle analysis,” Rev. Sci. Instrum. 71, 243–255 (2000).
[CrossRef]

A. N. Shvalov, J. T. Soini, I. V. Surovtsev, G. V. Kochneva, G. F. Sivolobova, A. K. Petrov, V. P. Maltsev, “Individual Escherichia coli cells studies from light scattering with the scanning flow cytometer,” Cytometry 41, 41–45 (2000).
[CrossRef] [PubMed]

1999 (1)

A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, V. P. Maltsev, “Particle classification from light scattering with the scanning flow cytometer,” Cytometry 37, 215–220 (1999).
[CrossRef] [PubMed]

1998 (1)

V. Ost, J. Neukammer, H. Rinneberg, “Flow cytometric differentiation of erythrocytes and leukocytes in dilute whole blood by light scattering,” Cytometry 32, 191–197 (1998).
[CrossRef] [PubMed]

1997 (1)

A. Dunn, C. Smithpeter, A. J. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).
[CrossRef] [PubMed]

1996 (2)

1995 (1)

1993 (1)

1988 (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

1987 (1)

B. G. de Grooth, L. W. M. M. Terstappen, G. J. Puppels, J. Greve, “Light-scattering polarization measurements as a new parameter in flow cytometry,” Cytometry 8, 539–544 (1987).
[CrossRef] [PubMed]

1986 (1)

1985 (1)

1984 (1)

M. C. Benson, D. C. McDougal, D. S. Coffey, “The application of perpendicular and forward light scatter to access nuclear and cellular morphology,” Cytometry 5, 515–522 (1984).
[CrossRef] [PubMed]

1983 (1)

Y. R. Kim, L. Ornstein, “Isovolumetric sphering of erythrocytes for more accurate and precise cell volume measurement by flow cytometry,” Cytometry 3, 419–427 (1983).
[CrossRef] [PubMed]

1975 (1)

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21, 1297–1304 (1975).
[PubMed]

1974 (1)

A. Brunsting, P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14, 439–453 (1974).
[CrossRef] [PubMed]

1969 (1)

P. J. Wyatt, “Identification of bacteria by differential light scattering,” Nature 221, 1257–1258 (1969).
[CrossRef] [PubMed]

1968 (1)

A. L. Koch, E. Ehrenfeld, “The size and shape of bacteria by light scattering measurements,” Biochim. Biophys. Acta 165, 262–273 (1968).
[CrossRef] [PubMed]

Auger, J.-C.

Benson, M. C.

M. C. Benson, D. C. McDougal, D. S. Coffey, “The application of perpendicular and forward light scatter to access nuclear and cellular morphology,” Cytometry 5, 515–522 (1984).
[CrossRef] [PubMed]

Bjerknes, R.

O. D. Laerum, R. Bjerknes, Flow Cytometry in Hematology (Academic, London, 1992).

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bottiger, J. R.

Brunsting, A.

A. Brunsting, P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14, 439–453 (1974).
[CrossRef] [PubMed]

Chang, R. K.

Chernyshev, A. V.

A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, V. P. Maltsev, “Particle classification from light scattering with the scanning flow cytometer,” Cytometry 37, 215–220 (1999).
[CrossRef] [PubMed]

Coffey, D. S.

M. C. Benson, D. C. McDougal, D. S. Coffey, “The application of perpendicular and forward light scatter to access nuclear and cellular morphology,” Cytometry 5, 515–522 (1984).
[CrossRef] [PubMed]

Crowell, J. M.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21, 1297–1304 (1975).
[PubMed]

de Grooth, B. G.

R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. de Grooth, J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35, 729–734 (1996).
[CrossRef] [PubMed]

B. G. de Grooth, L. W. M. M. Terstappen, G. J. Puppels, J. Greve, “Light-scattering polarization measurements as a new parameter in flow cytometry,” Cytometry 8, 539–544 (1987).
[CrossRef] [PubMed]

Doornbos, R. M. P.

Draine, B. T.

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Dunn, A.

A. Dunn, C. Smithpeter, A. J. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).
[CrossRef] [PubMed]

Ehrenfeld, E.

A. L. Koch, E. Ehrenfeld, “The size and shape of bacteria by light scattering measurements,” Biochim. Biophys. Acta 165, 262–273 (1968).
[CrossRef] [PubMed]

Eisert, W. G.

Epstein, E. A.

Flatau, P. J.

Fuller, K. A.

Goad, C. A.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21, 1297–1304 (1975).
[PubMed]

Gohlke, C.

C. Gohlke, “Laser-Durchflusszytometer zur winkelaufgelösten Beobachtung der Lichtstreuung und zum empfindlichen Fluoreszenznachweis einzelner (Blut-) Zellen,” Ph.D. dissertation (Fachbereich Physik der Freie Universität Berlin, Berlin, 1997).

Gouesbet, G.

Gréhan, G.

Greve, J.

R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. de Grooth, J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35, 729–734 (1996).
[CrossRef] [PubMed]

B. G. de Grooth, L. W. M. M. Terstappen, G. J. Puppels, J. Greve, “Light-scattering polarization measurements as a new parameter in flow cytometry,” Cytometry 8, 539–544 (1987).
[CrossRef] [PubMed]

Grinbaum, A.

Hansen, K. M.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21, 1297–1304 (1975).
[PubMed]

Hiebert, R. D.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21, 1297–1304 (1975).
[PubMed]

Hodges, J. T.

Hoekstra, A. G.

R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. de Grooth, J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35, 729–734 (1996).
[CrossRef] [PubMed]

A. G. Hoekstra, P. M. A. Sloot, “Biophysical and biomedical applications of nonspherical scattering,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 585–673.
[CrossRef]

Holler, S.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Ingram, M. L.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21, 1297–1304 (1975).
[PubMed]

Kim, Y. R.

Y. R. Kim, L. Ornstein, “Isovolumetric sphering of erythrocytes for more accurate and precise cell volume measurement by flow cytometry,” Cytometry 3, 419–427 (1983).
[CrossRef] [PubMed]

Koch, A. L.

A. L. Koch, E. Ehrenfeld, “The size and shape of bacteria by light scattering measurements,” Biochim. Biophys. Acta 165, 262–273 (1968).
[CrossRef] [PubMed]

Kochneva, G. V.

A. N. Shvalov, J. T. Soini, I. V. Surovtsev, G. V. Kochneva, G. F. Sivolobova, A. K. Petrov, V. P. Maltsev, “Individual Escherichia coli cells studies from light scattering with the scanning flow cytometer,” Cytometry 41, 41–45 (2000).
[CrossRef] [PubMed]

LaBauve, P. M.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21, 1297–1304 (1975).
[PubMed]

Laerum, O. D.

O. D. Laerum, R. Bjerknes, Flow Cytometry in Hematology (Academic, London, 1992).

Lindmo, T.

M. R. Melamed, T. Lindmo, M. L. Mendelsohn, Flow Cytometry and Sorting, 2nd ed. (Wiley, New York, 1990).

Lock, J. A.

Mackowski, D. W.

Maltsev, V. P.

A. N. Shvalov, J. T. Soini, I. V. Surovtsev, G. V. Kochneva, G. F. Sivolobova, A. K. Petrov, V. P. Maltsev, “Individual Escherichia coli cells studies from light scattering with the scanning flow cytometer,” Cytometry 41, 41–45 (2000).
[CrossRef] [PubMed]

V. P. Maltsev, “Scanning flow cytometry for individual particle analysis,” Rev. Sci. Instrum. 71, 243–255 (2000).
[CrossRef]

A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, V. P. Maltsev, “Particle classification from light scattering with the scanning flow cytometer,” Cytometry 37, 215–220 (1999).
[CrossRef] [PubMed]

Martin, J. C.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21, 1297–1304 (1975).
[PubMed]

McDougal, D. C.

M. C. Benson, D. C. McDougal, D. S. Coffey, “The application of perpendicular and forward light scatter to access nuclear and cellular morphology,” Cytometry 5, 515–522 (1984).
[CrossRef] [PubMed]

Melamed, M. R.

M. R. Melamed, T. Lindmo, M. L. Mendelsohn, Flow Cytometry and Sorting, 2nd ed. (Wiley, New York, 1990).

Mendelsohn, M. L.

M. R. Melamed, T. Lindmo, M. L. Mendelsohn, Flow Cytometry and Sorting, 2nd ed. (Wiley, New York, 1990).

Metz, M. H.

Mullaney, P. F.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21, 1297–1304 (1975).
[PubMed]

A. Brunsting, P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14, 439–453 (1974).
[CrossRef] [PubMed]

Neukammer, J.

V. Ost, J. Neukammer, H. Rinneberg, “Flow cytometric differentiation of erythrocytes and leukocytes in dilute whole blood by light scattering,” Cytometry 32, 191–197 (1998).
[CrossRef] [PubMed]

Ornstein, L.

Y. R. Kim, L. Ornstein, “Isovolumetric sphering of erythrocytes for more accurate and precise cell volume measurement by flow cytometry,” Cytometry 3, 419–427 (1983).
[CrossRef] [PubMed]

Ost, V.

V. Ost, J. Neukammer, H. Rinneberg, “Flow cytometric differentiation of erythrocytes and leukocytes in dilute whole blood by light scattering,” Cytometry 32, 191–197 (1998).
[CrossRef] [PubMed]

Pan, Y.

Petrov, A. K.

A. N. Shvalov, J. T. Soini, I. V. Surovtsev, G. V. Kochneva, G. F. Sivolobova, A. K. Petrov, V. P. Maltsev, “Individual Escherichia coli cells studies from light scattering with the scanning flow cytometer,” Cytometry 41, 41–45 (2000).
[CrossRef] [PubMed]

Polyzos, D.

Puppels, G. J.

B. G. de Grooth, L. W. M. M. Terstappen, G. J. Puppels, J. Greve, “Light-scattering polarization measurements as a new parameter in flow cytometry,” Cytometry 8, 539–544 (1987).
[CrossRef] [PubMed]

Richards-Kortum, R.

A. Dunn, C. Smithpeter, A. J. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).
[CrossRef] [PubMed]

Rinneberg, H.

V. Ost, J. Neukammer, H. Rinneberg, “Flow cytometric differentiation of erythrocytes and leukocytes in dilute whole blood by light scattering,” Cytometry 32, 191–197 (1998).
[CrossRef] [PubMed]

Salzman, G. C.

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21, 1297–1304 (1975).
[PubMed]

Schaeffer, M.

Schrader, H. W.

Sellountos, E. J.

Shvalov, A. N.

A. N. Shvalov, J. T. Soini, I. V. Surovtsev, G. V. Kochneva, G. F. Sivolobova, A. K. Petrov, V. P. Maltsev, “Individual Escherichia coli cells studies from light scattering with the scanning flow cytometer,” Cytometry 41, 41–45 (2000).
[CrossRef] [PubMed]

A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, V. P. Maltsev, “Particle classification from light scattering with the scanning flow cytometer,” Cytometry 37, 215–220 (1999).
[CrossRef] [PubMed]

Sivolobova, G. F.

A. N. Shvalov, J. T. Soini, I. V. Surovtsev, G. V. Kochneva, G. F. Sivolobova, A. K. Petrov, V. P. Maltsev, “Individual Escherichia coli cells studies from light scattering with the scanning flow cytometer,” Cytometry 41, 41–45 (2000).
[CrossRef] [PubMed]

Sloot, P. M. A.

R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. de Grooth, J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35, 729–734 (1996).
[CrossRef] [PubMed]

A. G. Hoekstra, P. M. A. Sloot, “Biophysical and biomedical applications of nonspherical scattering,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 585–673.
[CrossRef]

Smithpeter, C.

A. Dunn, C. Smithpeter, A. J. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).
[CrossRef] [PubMed]

Soini, J. T.

A. N. Shvalov, J. T. Soini, I. V. Surovtsev, G. V. Kochneva, G. F. Sivolobova, A. K. Petrov, V. P. Maltsev, “Individual Escherichia coli cells studies from light scattering with the scanning flow cytometer,” Cytometry 41, 41–45 (2000).
[CrossRef] [PubMed]

A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, V. P. Maltsev, “Particle classification from light scattering with the scanning flow cytometer,” Cytometry 37, 215–220 (1999).
[CrossRef] [PubMed]

Stout, B.

Surovtsev, I. V.

A. N. Shvalov, J. T. Soini, I. V. Surovtsev, G. V. Kochneva, G. F. Sivolobova, A. K. Petrov, V. P. Maltsev, “Individual Escherichia coli cells studies from light scattering with the scanning flow cytometer,” Cytometry 41, 41–45 (2000).
[CrossRef] [PubMed]

A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, V. P. Maltsev, “Particle classification from light scattering with the scanning flow cytometer,” Cytometry 37, 215–220 (1999).
[CrossRef] [PubMed]

Terstappen, L. W. M. M.

B. G. de Grooth, L. W. M. M. Terstappen, G. J. Puppels, J. Greve, “Light-scattering polarization measurements as a new parameter in flow cytometry,” Cytometry 8, 539–544 (1987).
[CrossRef] [PubMed]

Tsinopoulos, S. V.

Tycko, D. H.

Videen, G.

Welch, A. J.

A. Dunn, C. Smithpeter, A. J. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).
[CrossRef] [PubMed]

Wyatt, P. J.

P. J. Wyatt, “Identification of bacteria by differential light scattering,” Nature 221, 1257–1258 (1969).
[CrossRef] [PubMed]

Appl. Opt. (8)

S. Holler, J.-C. Auger, B. Stout, Y. Pan, J. R. Bottiger, R. K. Chang, G. Videen, “Observations and calculations of light scattering from clusters of spheres,” Appl. Opt. 39, 6873–6887 (2000).
[CrossRef]

S. V. Tsinopoulos, E. J. Sellountos, D. Polyzos, “Light scattering by aggregated red blood cells,” Appl. Opt. 41, 1408–1417 (2002).
[CrossRef] [PubMed]

H. W. Schrader, W. G. Eisert, “High resolution particle sizing using the combination of time-of-flight and light-scattering measurements,” Appl. Opt. 25, 4396–4401 (1986).
[CrossRef] [PubMed]

R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. de Grooth, J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35, 729–734 (1996).
[CrossRef] [PubMed]

P. J. Flatau, K. A. Fuller, D. W. Mackowski, “Scattering by two spheres in contact: comparison between discrete-dipole approximation and modal analysis,” Appl. Opt. 32, 3302–3305 (1993).
[CrossRef] [PubMed]

J. A. Lock, J. T. Hodges, “Far-field scattering of an axisymmetric laser beam of arbitrary profile by an on-axis spherical particle,” Appl. Opt. 35, 4283–4290 (1996).
[CrossRef] [PubMed]

G. Gouesbet, J. A. Lock, G. Gréhan, “Partial-wave representations of laser beams for use in light-scattering calculations,” Appl. Opt. 34, 2133–2143 (1995).
[CrossRef] [PubMed]

D. H. Tycko, M. H. Metz, E. A. Epstein, A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. Opt. 24, 1355–1365 (1985).
[CrossRef] [PubMed]

Astrophys. J. (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Biochim. Biophys. Acta (1)

A. L. Koch, E. Ehrenfeld, “The size and shape of bacteria by light scattering measurements,” Biochim. Biophys. Acta 165, 262–273 (1968).
[CrossRef] [PubMed]

Biophys. J. (1)

A. Brunsting, P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14, 439–453 (1974).
[CrossRef] [PubMed]

Clin. Chem. (1)

G. C. Salzman, J. M. Crowell, C. A. Goad, K. M. Hansen, R. D. Hiebert, P. M. LaBauve, J. C. Martin, M. L. Ingram, P. F. Mullaney, “A flow-system multiangle light-scattering instrument for cell characterization,” Clin. Chem. 21, 1297–1304 (1975).
[PubMed]

Cytometry (6)

A. N. Shvalov, J. T. Soini, I. V. Surovtsev, G. V. Kochneva, G. F. Sivolobova, A. K. Petrov, V. P. Maltsev, “Individual Escherichia coli cells studies from light scattering with the scanning flow cytometer,” Cytometry 41, 41–45 (2000).
[CrossRef] [PubMed]

A. N. Shvalov, I. V. Surovtsev, A. V. Chernyshev, J. T. Soini, V. P. Maltsev, “Particle classification from light scattering with the scanning flow cytometer,” Cytometry 37, 215–220 (1999).
[CrossRef] [PubMed]

B. G. de Grooth, L. W. M. M. Terstappen, G. J. Puppels, J. Greve, “Light-scattering polarization measurements as a new parameter in flow cytometry,” Cytometry 8, 539–544 (1987).
[CrossRef] [PubMed]

M. C. Benson, D. C. McDougal, D. S. Coffey, “The application of perpendicular and forward light scatter to access nuclear and cellular morphology,” Cytometry 5, 515–522 (1984).
[CrossRef] [PubMed]

V. Ost, J. Neukammer, H. Rinneberg, “Flow cytometric differentiation of erythrocytes and leukocytes in dilute whole blood by light scattering,” Cytometry 32, 191–197 (1998).
[CrossRef] [PubMed]

Y. R. Kim, L. Ornstein, “Isovolumetric sphering of erythrocytes for more accurate and precise cell volume measurement by flow cytometry,” Cytometry 3, 419–427 (1983).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

A. Dunn, C. Smithpeter, A. J. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).
[CrossRef] [PubMed]

Nature (1)

P. J. Wyatt, “Identification of bacteria by differential light scattering,” Nature 221, 1257–1258 (1969).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

V. P. Maltsev, “Scanning flow cytometry for individual particle analysis,” Rev. Sci. Instrum. 71, 243–255 (2000).
[CrossRef]

Other (6)

M. R. Melamed, T. Lindmo, M. L. Mendelsohn, Flow Cytometry and Sorting, 2nd ed. (Wiley, New York, 1990).

O. D. Laerum, R. Bjerknes, Flow Cytometry in Hematology (Academic, London, 1992).

A. G. Hoekstra, P. M. A. Sloot, “Biophysical and biomedical applications of nonspherical scattering,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds. (Academic, San Diego, Calif., 2000), pp. 585–673.
[CrossRef]

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

C. Gohlke, “Laser-Durchflusszytometer zur winkelaufgelösten Beobachtung der Lichtstreuung und zum empfindlichen Fluoreszenznachweis einzelner (Blut-) Zellen,” Ph.D. dissertation (Fachbereich Physik der Freie Universität Berlin, Berlin, 1997).

C. Lentner, ed., Wissenschaftliche Tabellen Geigy, Teilband Hämatologie und Humangenetik, 8 Auflage (CIBA-GEIGY, Basel, Switzerland, 1979), p. 188.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Flow cytometer modified to observe angular distributions of light scattered by single particles: IF, interference filter; M, mirror; PMT, photomultiplier tube; BS, beam splitter; ICCD camera, intensified CCD camera.

Fig. 2
Fig. 2

(a) Side view of the interaction region. Angular-resolved light scatter of single particles, selected upstream by integrated forward and orthogonal light scatter from probing beams, is observed by an intensified CCD camera, ICCD; PMT, photomultiplier tube. (b) Typical scatter diagram of a dilute whole blood sample obtained by simultaneous observation of integrated forward and integrated orthogonal light scatter at 413.1 nm. Red blood cells (RBC) and white blood cells [leukocytes, i.e., lymphocytes (Ly), monocytes (M), and granulocytes (G)] are observed. Straight lines, discriminator settings of two single-channel analyzers (SCA 1 and SCA 2) for selection of lymphocytes.

Fig. 3
Fig. 3

Experimental setup for observing angular distributions of light scattering by optically trapped particles; the CCD video camera used to image the light scattered onto the ground-glass screen not shown.

Fig. 4
Fig. 4

Angular-resolved orthogonal light scatter (488.0 nm) of single particles. (a) Polystyrene microsphere with diameter d = 1.91 μm, (b) agglomerate of two identical polystyrene microspheres (d = 1.91 μm) oriented along the x axis (flow direction), (c) sphered and (d) native red blood cells, (e) lymphocyte, (f) scattering geometry. The hatched area represents the scattering plane.

Fig. 5
Fig. 5

Comparison of experimental (solid curves, arbitrary units) and theoretical (dotted curves) differential light-scattering cross sections corresponding to the angular distributions shown in Figs. 4(b)4(e). (a) Vertical cross section through Fig. 4b (dumbbell) compared with [S 11 + S 12 cos(2ϕ) + S 13 sin(2ϕ)] calculated by the discrete dipole approximation. Horizontal cross sections (b) through Fig. 4(c) (sphered red blood cell) and (c) through Fig. 4(e) (lymphocyte) compared with the matrix elements |S 1(θ)|2 calculated by generalized Lorentz-Mie theory.

Fig. 6
Fig. 6

Angular-resolved forward light scatter (632.8 nm) of particle agglomerates of polystyrene microspheres (d = 10 μm) in an optical trap. (a) Scattering geometry. The hatched area represents the scattering plane. Angular distributions of scattered light recorded at position z = z 0 of the ground-glass screen (see Fig. 3) for linear chains of (b) two, (c) four, and (d) six identical microspheres.

Fig. 7
Fig. 7

Comparison of experimental differential light-scattering cross sections (solid curves) derived from Fig. 6 and calculated cross sections (dotted curves). Top three traces are along horizontal sections (x = 0, z = z 0); lower three traces represent vertical (y = 0, z = z 0) sections after rotation of the distributions by the corresponding small tilting angle.

Fig. 8
Fig. 8

(a) Forward light scatter (488.0 nm) of a dumbbell composed of two microspheres, each with a diameter of 1 μm. (b) Comparison of measured (solid curve) and theoretical (dashed curve) differential cross sections, calculated by the discrete dipole approximation.17,18 Vertical dashed line, noise equivalent differential cross section of the detector.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

x=lαMOarccos-sin θ sin ϕsin θ cos ϕ1-sin2 θ sin2 ϕ1/2,
z=lαMOarccos-sin θ sin ϕcos θ1-sin2 θ sin2 ϕ1/2,
dCscaθ, ϕdΩexp=ΔWscax, yIincΔΩ,
ΔΩ=ΔF·êRx, yRx, y2=ΔxΔy cos3θz02.
dCscaθ, ϕ=±90°dΩexp=ΔWscax=0, yIincΔxΔy/z02cos3 θ.
dCscaθ, ϕ=±90°dΩtheo=|S1θ|2kmed2 p2,
dCscaθ, ϕ=0°, 180°dΩtheo=|S2θ|2kmed2 p2Fgrat,
dCscaθ, ϕ=0°, 180°dΩtheo|S1θ|2kmed2 p2Fgrat,
Fgrat=sin2pπd/λmedsin θp2 sin2πd/λmedsin θ.

Metrics