Abstract

We are developing a method for real-time detection, tracking, and categorization of micrometer- and nanometer-scale particles and materials using light scattered from a swept standing-wave probe. Synchronous, phase-sensitive detection of the weakly scattered optical field is exploited to provide interferometric sensitivity and improve the signal-to-noise ratio, allowing use of low-power laser diode sources and photodiode detectors. To demonstrate the technique, we probe a set of W, C, and Cu microfibers and determine diameters and refractive-index values from a detailed comparison of light-scattering data and a numerical model. We extrapolate these results and discuss the application of laser diode sources and photodiode receivers for the detection and study of nanoscale materials.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, London, 1981).
  2. A. J. Smits, T. T. Lim, Flow Visualization (Imperial College, London, 2000).
  3. S. K. Friedlander, Smoke, Dust, and Haze (Oxford U. Press, New York, 2000).
  4. A. V. Failla, U. Spoeri, B. Albrecht, A. Kroll, C. Cremer, “Nanosizing of fluorescent objects by spatially modulated illumination microscopy,” Appl. Opt. 41, 7275–7283 (2002).
    [CrossRef] [PubMed]
  5. S. Hell, E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992).
    [CrossRef]
  6. W. M. Farmer, “Measurement of particle size, number density, and velocity using a laser interferometer,” Appl. Opt. 11, 2603–2612 (1972).
    [CrossRef] [PubMed]
  7. W. F. Farmer, “Observation of large particles with a laser interferometer,” Appl. Opt. 13, 610–622 (1974).
    [CrossRef] [PubMed]
  8. D. W. Roberds, C. W. Brasier, B. W. Bomar, “Use of a particle sizing interferometer to study water droplet size distribution,” Opt. Eng. 18, 236–242 (1979).
    [CrossRef]
  9. C. F. Hess, V. E. Espinosa, “Spray characterization with a nonintrusive technique using absolute scattered light,” Opt. Eng. 23, 604–609 (1984).
    [CrossRef]
  10. C. F. Hess, “Nonintrusive optical single-particle counter for measuring the size and velocity of droplets in a spray,” Appl. Opt. 23, 4375–4382 (1984).
    [CrossRef] [PubMed]
  11. J. H. Scofield, “Frequency-domain description of a lock-in amplifier,” Am. J. Phys. 62, 129–133 (1994).
    [CrossRef]
  12. B. E. Dahneke, D. K. Hutchins, “Characterization of particles by modulated dynamic light scattering. I. Theory,” J. Chem. Phys. 100, 7890–7902 (1994).
    [CrossRef]
  13. D. K. Hutchins, B. E. Dahneke, “Characterization of particles by modulated dynamic light scattering. I. Experiment,” J. Chem. Phys. 100, 7903–7915 (1994).
    [CrossRef]
  14. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  15. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  16. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).
  17. Th. Preibisch, V. Ossenkopf, H. W. Yorke, Th. Henning, “The influence of ice-coated grains on protostellar spectra,” Astron. Astrophys. 279, 577–588 (1993).
  18. A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063 (2002).
    [CrossRef]
  19. J. C. F. Wang, K. R. Hencken, “In situ particle size measurements using a two-color laser scattering technique,” Appl. Opt. 25, 653–657 (1986).
    [CrossRef] [PubMed]

2002 (2)

1994 (3)

J. H. Scofield, “Frequency-domain description of a lock-in amplifier,” Am. J. Phys. 62, 129–133 (1994).
[CrossRef]

B. E. Dahneke, D. K. Hutchins, “Characterization of particles by modulated dynamic light scattering. I. Theory,” J. Chem. Phys. 100, 7890–7902 (1994).
[CrossRef]

D. K. Hutchins, B. E. Dahneke, “Characterization of particles by modulated dynamic light scattering. I. Experiment,” J. Chem. Phys. 100, 7903–7915 (1994).
[CrossRef]

1993 (1)

Th. Preibisch, V. Ossenkopf, H. W. Yorke, Th. Henning, “The influence of ice-coated grains on protostellar spectra,” Astron. Astrophys. 279, 577–588 (1993).

1992 (1)

1986 (1)

1984 (2)

C. F. Hess, V. E. Espinosa, “Spray characterization with a nonintrusive technique using absolute scattered light,” Opt. Eng. 23, 604–609 (1984).
[CrossRef]

C. F. Hess, “Nonintrusive optical single-particle counter for measuring the size and velocity of droplets in a spray,” Appl. Opt. 23, 4375–4382 (1984).
[CrossRef] [PubMed]

1979 (1)

D. W. Roberds, C. W. Brasier, B. W. Bomar, “Use of a particle sizing interferometer to study water droplet size distribution,” Opt. Eng. 18, 236–242 (1979).
[CrossRef]

1974 (1)

1972 (1)

Albrecht, B.

Ampem-Lassen, E.

Barty, A.

Baxter, G. W.

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bomar, B. W.

D. W. Roberds, C. W. Brasier, B. W. Bomar, “Use of a particle sizing interferometer to study water droplet size distribution,” Opt. Eng. 18, 236–242 (1979).
[CrossRef]

Brasier, C. W.

D. W. Roberds, C. W. Brasier, B. W. Bomar, “Use of a particle sizing interferometer to study water droplet size distribution,” Opt. Eng. 18, 236–242 (1979).
[CrossRef]

Cremer, C.

Dahneke, B. E.

B. E. Dahneke, D. K. Hutchins, “Characterization of particles by modulated dynamic light scattering. I. Theory,” J. Chem. Phys. 100, 7890–7902 (1994).
[CrossRef]

D. K. Hutchins, B. E. Dahneke, “Characterization of particles by modulated dynamic light scattering. I. Experiment,” J. Chem. Phys. 100, 7903–7915 (1994).
[CrossRef]

Dragomir, N. M.

Durst, F.

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, London, 1981).

Espinosa, V. E.

C. F. Hess, V. E. Espinosa, “Spray characterization with a nonintrusive technique using absolute scattered light,” Opt. Eng. 23, 604–609 (1984).
[CrossRef]

Failla, A. V.

Farmer, W. F.

Farmer, W. M.

Friedlander, S. K.

S. K. Friedlander, Smoke, Dust, and Haze (Oxford U. Press, New York, 2000).

Hell, S.

Hencken, K. R.

Henning, Th.

Th. Preibisch, V. Ossenkopf, H. W. Yorke, Th. Henning, “The influence of ice-coated grains on protostellar spectra,” Astron. Astrophys. 279, 577–588 (1993).

Hess, C. F.

C. F. Hess, “Nonintrusive optical single-particle counter for measuring the size and velocity of droplets in a spray,” Appl. Opt. 23, 4375–4382 (1984).
[CrossRef] [PubMed]

C. F. Hess, V. E. Espinosa, “Spray characterization with a nonintrusive technique using absolute scattered light,” Opt. Eng. 23, 604–609 (1984).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Huntington, S. T.

Hutchins, D. K.

B. E. Dahneke, D. K. Hutchins, “Characterization of particles by modulated dynamic light scattering. I. Theory,” J. Chem. Phys. 100, 7890–7902 (1994).
[CrossRef]

D. K. Hutchins, B. E. Dahneke, “Characterization of particles by modulated dynamic light scattering. I. Experiment,” J. Chem. Phys. 100, 7903–7915 (1994).
[CrossRef]

Kroll, A.

Lim, T. T.

A. J. Smits, T. T. Lim, Flow Visualization (Imperial College, London, 2000).

Melling, A.

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, London, 1981).

Nugent, K. A.

Ossenkopf, V.

Th. Preibisch, V. Ossenkopf, H. W. Yorke, Th. Henning, “The influence of ice-coated grains on protostellar spectra,” Astron. Astrophys. 279, 577–588 (1993).

Preibisch, Th.

Th. Preibisch, V. Ossenkopf, H. W. Yorke, Th. Henning, “The influence of ice-coated grains on protostellar spectra,” Astron. Astrophys. 279, 577–588 (1993).

Roberds, D. W.

D. W. Roberds, C. W. Brasier, B. W. Bomar, “Use of a particle sizing interferometer to study water droplet size distribution,” Opt. Eng. 18, 236–242 (1979).
[CrossRef]

Roberts, A.

Scofield, J. H.

J. H. Scofield, “Frequency-domain description of a lock-in amplifier,” Am. J. Phys. 62, 129–133 (1994).
[CrossRef]

Smits, A. J.

A. J. Smits, T. T. Lim, Flow Visualization (Imperial College, London, 2000).

Spoeri, U.

Stelzer, E. H. K.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Wang, J. C. F.

Whitelaw, J. H.

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, London, 1981).

Yorke, H. W.

Th. Preibisch, V. Ossenkopf, H. W. Yorke, Th. Henning, “The influence of ice-coated grains on protostellar spectra,” Astron. Astrophys. 279, 577–588 (1993).

Am. J. Phys. (1)

J. H. Scofield, “Frequency-domain description of a lock-in amplifier,” Am. J. Phys. 62, 129–133 (1994).
[CrossRef]

Appl. Opt. (5)

Astron. Astrophys. (1)

Th. Preibisch, V. Ossenkopf, H. W. Yorke, Th. Henning, “The influence of ice-coated grains on protostellar spectra,” Astron. Astrophys. 279, 577–588 (1993).

J. Chem. Phys. (2)

B. E. Dahneke, D. K. Hutchins, “Characterization of particles by modulated dynamic light scattering. I. Theory,” J. Chem. Phys. 100, 7890–7902 (1994).
[CrossRef]

D. K. Hutchins, B. E. Dahneke, “Characterization of particles by modulated dynamic light scattering. I. Experiment,” J. Chem. Phys. 100, 7903–7915 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (2)

D. W. Roberds, C. W. Brasier, B. W. Bomar, “Use of a particle sizing interferometer to study water droplet size distribution,” Opt. Eng. 18, 236–242 (1979).
[CrossRef]

C. F. Hess, V. E. Espinosa, “Spray characterization with a nonintrusive technique using absolute scattered light,” Opt. Eng. 23, 604–609 (1984).
[CrossRef]

Opt. Lett. (1)

Other (6)

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, London, 1981).

A. J. Smits, T. T. Lim, Flow Visualization (Imperial College, London, 2000).

S. K. Friedlander, Smoke, Dust, and Haze (Oxford U. Press, New York, 2000).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Interferometric probing region is formed at the intersection of coherent laser beams. Particles in this region are monitored by the scattering of modulated light into photodetectors PD S and PD F .

Fig. 2
Fig. 2

Comparison of detected (thick curve) and modeled (thin curve) PSD signal distributions for 780-nm light incident on a 3.5-μm-diameter W fiber.

Fig. 3
Fig. 3

Forward-detected PSD signal versus interference fringe period for a 26-μm-diameter W fiber, where the fringe period is normalized to the fiber diameter. Measurements (squares) are compared with model signals, assuming either a perfectly smooth (solid curve) or rough (dashed curve) fiber.

Fig. 4
Fig. 4

Variation of the forward-detected PSD signal resulting from translation of an ∼25-μm-diameter Lycopodium particle through the detection region. The interferometric fringe period in the region is 78 μm.

Fig. 5
Fig. 5

Forward-detected PSD signal SNR versus fiber diameter. The three squares mark the measured SNR for 3.5-, 15-, and 26-μm W fibers. The solid curve gives the modeled SNR trendline for the existing experimental setup. The dashed curve applies if a 100× SNR improvement is realized.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λf=2πq=λ2 sin γ,
ESi  E0Ti,
ES=ES1 expiΦ+ES2.
IS  I0|expiΦT1+T2|2.
S  I0|T1*T2|cos ϕ,
EF=EP1 expiΦ+ES1 expiΦ+ES2,
F  I0|T21|cos ϕ,

Metrics