Abstract

We propose a new process for fabrication of plastic rod lenses based on the traditional method of fiber extrusion. The process consists of the following steps: multilayer conjugate extrusion, monomer diffusion between adjacent layers, and photopolymerization of an uncured strand fiber. We call this process a mutual diffusion process for continuous plastic rod lens fabrication. Characteristics of this process are as follows: fast production speed (∼100 cm/min), precision control of refractive-index distribution, high angular aperture, and long-term reliability. The optical resolution of the rod-lens array is 300 dpi, which is high enough for application to G3 facsimiles with transmission time of less than 1 min and monochromatic scanners.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. F. Borrelli, Microoptics Technology—Fabrication and Application of Lens Arrays and Devices (Marcel Dekker, New York, 1999).
  2. K. Iga, N. Yamamoto, “Plastic focusing fiber for imaging applications,” Appl. Opt. 16, 1305–1310 (1977).
    [CrossRef] [PubMed]
  3. Y. Koike, Y. Ohtsuka, “Studies on the light-focusing plastic rod. 15: GRIN rod prepared by photocopolymerization of a ternary monomer system,” Appl. Opt. 22, 418–423 (1983).
    [CrossRef] [PubMed]
  4. Y. Koike, N. Tanio, E. Nihei, Y. Ohtsuka, “Gradient-index polymer materials and their optical devices,” Polym. Eng. Sci. 29, 1200–1204 (1989).
    [CrossRef]
  5. Y. Koike, “High-bandwidth graded-index polymer optical fiber,” Polymer 32, 1737–1745 (1991).
    [CrossRef]
  6. T. Ishigure, M. Sato, E. Nihei, Y. Koike, “Graded-index polymer optical fiber with high thermal stability of bandwidth,” Jpn. J. Appl. Phys. 37, 3986–3991 (1998).
    [CrossRef]
  7. Y. Uodu, T. Ishimaru, “Optical characteristics of new plastic rod-lens array,” in Proceedings of Miyazaki International Symposium, 11th Symposium on Optical and Electrical Properties of Organic Materials, S. Tasaka, ed. (Society of Fiber Science and Technology, Japan, Tokyo, Japan, 1996), pp. 7–10.
  8. Y. Uodu, N. Toyoda, “Plastic rod-lens with excellent optical performance,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communication, W. F. Frank, ed., Proc. SPIE3135, 112–123 (1997).
    [CrossRef]
  9. N. Yamamoto, K. Iga, “Evaluation of gradient-index rod lenses by imaging,” Appl. Opt. 19, 1101–1104 (1980).
    [CrossRef] [PubMed]
  10. M. Kawazu, Y. Ogura, “Application of gradient-index fiber arrays to copy machines,” Appl. Opt. 19, 1105–1112 (1980).
    [CrossRef] [PubMed]
  11. W. L. Lama, “Optical properties of GRIN fiber lens arrays: dependence on fiber length,” Appl. Opt. 21, 2739–2746 (1982).
    [CrossRef] [PubMed]
  12. K. Iga, Y. Kokubun, “Formulas for calculating the refractive index profile of optical fibers from transverse interference patterns,” Appl. Opt. 17, 1972–1974 (1978).
    [CrossRef] [PubMed]

1998

T. Ishigure, M. Sato, E. Nihei, Y. Koike, “Graded-index polymer optical fiber with high thermal stability of bandwidth,” Jpn. J. Appl. Phys. 37, 3986–3991 (1998).
[CrossRef]

1991

Y. Koike, “High-bandwidth graded-index polymer optical fiber,” Polymer 32, 1737–1745 (1991).
[CrossRef]

1989

Y. Koike, N. Tanio, E. Nihei, Y. Ohtsuka, “Gradient-index polymer materials and their optical devices,” Polym. Eng. Sci. 29, 1200–1204 (1989).
[CrossRef]

1983

1982

1980

1978

1977

Borrelli, N. F.

N. F. Borrelli, Microoptics Technology—Fabrication and Application of Lens Arrays and Devices (Marcel Dekker, New York, 1999).

Iga, K.

Ishigure, T.

T. Ishigure, M. Sato, E. Nihei, Y. Koike, “Graded-index polymer optical fiber with high thermal stability of bandwidth,” Jpn. J. Appl. Phys. 37, 3986–3991 (1998).
[CrossRef]

Ishimaru, T.

Y. Uodu, T. Ishimaru, “Optical characteristics of new plastic rod-lens array,” in Proceedings of Miyazaki International Symposium, 11th Symposium on Optical and Electrical Properties of Organic Materials, S. Tasaka, ed. (Society of Fiber Science and Technology, Japan, Tokyo, Japan, 1996), pp. 7–10.

Kawazu, M.

Koike, Y.

T. Ishigure, M. Sato, E. Nihei, Y. Koike, “Graded-index polymer optical fiber with high thermal stability of bandwidth,” Jpn. J. Appl. Phys. 37, 3986–3991 (1998).
[CrossRef]

Y. Koike, “High-bandwidth graded-index polymer optical fiber,” Polymer 32, 1737–1745 (1991).
[CrossRef]

Y. Koike, N. Tanio, E. Nihei, Y. Ohtsuka, “Gradient-index polymer materials and their optical devices,” Polym. Eng. Sci. 29, 1200–1204 (1989).
[CrossRef]

Y. Koike, Y. Ohtsuka, “Studies on the light-focusing plastic rod. 15: GRIN rod prepared by photocopolymerization of a ternary monomer system,” Appl. Opt. 22, 418–423 (1983).
[CrossRef] [PubMed]

Kokubun, Y.

Lama, W. L.

Nihei, E.

T. Ishigure, M. Sato, E. Nihei, Y. Koike, “Graded-index polymer optical fiber with high thermal stability of bandwidth,” Jpn. J. Appl. Phys. 37, 3986–3991 (1998).
[CrossRef]

Y. Koike, N. Tanio, E. Nihei, Y. Ohtsuka, “Gradient-index polymer materials and their optical devices,” Polym. Eng. Sci. 29, 1200–1204 (1989).
[CrossRef]

Ogura, Y.

Ohtsuka, Y.

Y. Koike, N. Tanio, E. Nihei, Y. Ohtsuka, “Gradient-index polymer materials and their optical devices,” Polym. Eng. Sci. 29, 1200–1204 (1989).
[CrossRef]

Y. Koike, Y. Ohtsuka, “Studies on the light-focusing plastic rod. 15: GRIN rod prepared by photocopolymerization of a ternary monomer system,” Appl. Opt. 22, 418–423 (1983).
[CrossRef] [PubMed]

Sato, M.

T. Ishigure, M. Sato, E. Nihei, Y. Koike, “Graded-index polymer optical fiber with high thermal stability of bandwidth,” Jpn. J. Appl. Phys. 37, 3986–3991 (1998).
[CrossRef]

Tanio, N.

Y. Koike, N. Tanio, E. Nihei, Y. Ohtsuka, “Gradient-index polymer materials and their optical devices,” Polym. Eng. Sci. 29, 1200–1204 (1989).
[CrossRef]

Toyoda, N.

Y. Uodu, N. Toyoda, “Plastic rod-lens with excellent optical performance,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communication, W. F. Frank, ed., Proc. SPIE3135, 112–123 (1997).
[CrossRef]

Uodu, Y.

Y. Uodu, N. Toyoda, “Plastic rod-lens with excellent optical performance,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communication, W. F. Frank, ed., Proc. SPIE3135, 112–123 (1997).
[CrossRef]

Y. Uodu, T. Ishimaru, “Optical characteristics of new plastic rod-lens array,” in Proceedings of Miyazaki International Symposium, 11th Symposium on Optical and Electrical Properties of Organic Materials, S. Tasaka, ed. (Society of Fiber Science and Technology, Japan, Tokyo, Japan, 1996), pp. 7–10.

Yamamoto, N.

Appl. Opt.

Jpn. J. Appl. Phys.

T. Ishigure, M. Sato, E. Nihei, Y. Koike, “Graded-index polymer optical fiber with high thermal stability of bandwidth,” Jpn. J. Appl. Phys. 37, 3986–3991 (1998).
[CrossRef]

Polym. Eng. Sci.

Y. Koike, N. Tanio, E. Nihei, Y. Ohtsuka, “Gradient-index polymer materials and their optical devices,” Polym. Eng. Sci. 29, 1200–1204 (1989).
[CrossRef]

Polymer

Y. Koike, “High-bandwidth graded-index polymer optical fiber,” Polymer 32, 1737–1745 (1991).
[CrossRef]

Other

Y. Uodu, T. Ishimaru, “Optical characteristics of new plastic rod-lens array,” in Proceedings of Miyazaki International Symposium, 11th Symposium on Optical and Electrical Properties of Organic Materials, S. Tasaka, ed. (Society of Fiber Science and Technology, Japan, Tokyo, Japan, 1996), pp. 7–10.

Y. Uodu, N. Toyoda, “Plastic rod-lens with excellent optical performance,” in Precision Plastic Optics for Optical Storage, Displays, Imaging, and Communication, W. F. Frank, ed., Proc. SPIE3135, 112–123 (1997).
[CrossRef]

N. F. Borrelli, Microoptics Technology—Fabrication and Application of Lens Arrays and Devices (Marcel Dekker, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of image transfer through a rod lens: P, pitch of the light oscillating about the axis of the rod lens.

Fig. 2
Fig. 2

Mutual diffusion process for continuous fabrication of plastic rod lenses.

Fig. 3
Fig. 3

Apparatus for measuring deformed images.

Fig. 4
Fig. 4

Various images through rod lenses.

Fig. 5
Fig. 5

Equipment for measurement of MTF.

Fig. 6
Fig. 6

Image through the plastic rod lens.

Fig. 7
Fig. 7

Refractive-index distribution of the plastic rod lens: filled squares, experiment; solid curve, fit according to Eq. (2) with g = 0.564 mm-1.

Fig. 8
Fig. 8

Structure and dimensions of the rod lens array.

Tables (6)

Tables Icon

Table 1 MTF Values for the Plastic Rod Lens Array and a Standard-Grade (SLA20B) Glass Rod Lens Arraya

Tables Icon

Table 2 Optical Characteristics of the Plastic Rod Lens Relative to Temperature at the Conjugate Nozzle

Tables Icon

Table 3 Optical Characteristics of the Plastic Rod Lens Relative to Temperature at the Diffusion Section

Tables Icon

Table 4 Optical Characteristics of the Plastic Rod Lens Relative to Radial Thickness Ratios of the Five Layers

Tables Icon

Table 5 Durability Tests for the Plastic Rod Lens Arraya

Tables Icon

Table 6 Amounts of Residual Monomers in the Plastic Rod Lens

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

MTFW=IWmax-IWminIWmax+IWmin×100%
nr=n01-g2r2/21/2,

Metrics