Abstract

An interferential position sensor for operation in space at a deep cryogenic temperature (4 K) is derived from a commercial sensor. The application is for the Spectral and Photometric Imaging Receiver submillimetric imaging Fourier-transform spectrometer on the Herschel space telescope. This sensor is used to control the displacement of the interferometer’s moving mirrors and to sample the interferograms. This development addresses the following points: minimization of the effects of cooling critical optical parts, introduction of a fully redundant focal plane, selection of optoelectronic components efficient at 4 K, and design of a cryogenic preamplifier.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
    [CrossRef]
  2. J. W. Brault, “New approach to high-precision Fourier transform spectrometer design,” Appl. Opt. 35, 2891–2896 (1996).
    [CrossRef] [PubMed]
  3. J. C. Brasunas, G. M. Cushman, “Uniform time-sampling Fourier transform spectroscopy,” Appl. Opt. 36, 2206–2210 (1997).
    [CrossRef] [PubMed]
  4. K. J. Wildeman, G. R. Ploeger, D. Snel, J. J. Wijnbergen, “Grating drive for the short wavelength spectrometer in ISO,” Cryogenics 27, 68–72 (1987).
    [CrossRef]
  5. K. W. Stark, M. Wilson, “A mirror transport mechanism for use at cryogenic temperature,” in 20th Aerospace Mechanisms Symposium, NASA Conf. Publ. 2423, 73–95 (1986).
  6. G. N. Rassudova, “Moire interference fringes in a system consisting of a transmission and a reflection diffraction grating,” Opt. Spectrosc. 22, 73–78 (1967).
  7. F. M. Gerasimov, “Use of diffraction gratings for controlling a ruling engine,” Appl. Opt. 6, 1861–1864 (1967).
    [CrossRef] [PubMed]
  8. “Exposed linear encoders: the interferential measuring principle with single-field scanning (Heidenhain GmbH, Traunreut, Germany, 2002). Documentation available at http://www.heidenhain.com/exposedlinearencoders/lip401A .
  9. A. Spies, “Längen in der Ultrapräzisionstechnik messen,” Feinwerktechnik & Messtechnik 98, 406–410 (1990).
  10. D. Vukobratovich, “Lens mounting,” in Introduction to Optomechanical Design, SPIE Short Course SC014 (SPIE, Bellingham, Wash., 2000).
  11. B. Lengeler, “Semiconductor devices suitable for use in cryogenic environments,” Cryogenics 14, 439–447 (1974).
    [CrossRef]
  12. C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A direct coupled low noise preamplifier for cryogenically cooled photoconductive i.r. detectors,” Infrared Phys. 14, 165–176 (1974).
    [CrossRef]
  13. B. B. Snavely, J. C. Yutzy, “Impedance-transformation circuit for operation at 4.2 K,” Rev. Sci. Instrum. 38, 703–704 (1967).
    [CrossRef]
  14. A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far IR imaging Fabry-Perot interferometer (FIFI),” Int. J. Infrared Millim. Waves 12, 859–884 (1991).
    [CrossRef]
  15. T. J. Cunningham, R. C. Gee, E. R. Fossum, S. M. Baier, “Deep cryogenic noise and electrical characterization of the complementary heterojunction field-effect transistor (CHFET),” IEEE Trans. Electron Devices 41, 888–895 (1994).
    [CrossRef]

1997

1996

1994

T. J. Cunningham, R. C. Gee, E. R. Fossum, S. M. Baier, “Deep cryogenic noise and electrical characterization of the complementary heterojunction field-effect transistor (CHFET),” IEEE Trans. Electron Devices 41, 888–895 (1994).
[CrossRef]

1991

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far IR imaging Fabry-Perot interferometer (FIFI),” Int. J. Infrared Millim. Waves 12, 859–884 (1991).
[CrossRef]

1990

A. Spies, “Längen in der Ultrapräzisionstechnik messen,” Feinwerktechnik & Messtechnik 98, 406–410 (1990).

1987

K. J. Wildeman, G. R. Ploeger, D. Snel, J. J. Wijnbergen, “Grating drive for the short wavelength spectrometer in ISO,” Cryogenics 27, 68–72 (1987).
[CrossRef]

1986

K. W. Stark, M. Wilson, “A mirror transport mechanism for use at cryogenic temperature,” in 20th Aerospace Mechanisms Symposium, NASA Conf. Publ. 2423, 73–95 (1986).

1974

B. Lengeler, “Semiconductor devices suitable for use in cryogenic environments,” Cryogenics 14, 439–447 (1974).
[CrossRef]

C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A direct coupled low noise preamplifier for cryogenically cooled photoconductive i.r. detectors,” Infrared Phys. 14, 165–176 (1974).
[CrossRef]

1967

B. B. Snavely, J. C. Yutzy, “Impedance-transformation circuit for operation at 4.2 K,” Rev. Sci. Instrum. 38, 703–704 (1967).
[CrossRef]

G. N. Rassudova, “Moire interference fringes in a system consisting of a transmission and a reflection diffraction grating,” Opt. Spectrosc. 22, 73–78 (1967).

F. M. Gerasimov, “Use of diffraction gratings for controlling a ruling engine,” Appl. Opt. 6, 1861–1864 (1967).
[CrossRef] [PubMed]

Ade, P. A.

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

Baier, S. M.

T. J. Cunningham, R. C. Gee, E. R. Fossum, S. M. Baier, “Deep cryogenic noise and electrical characterization of the complementary heterojunction field-effect transistor (CHFET),” IEEE Trans. Electron Devices 41, 888–895 (1994).
[CrossRef]

Baker, D. J.

C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A direct coupled low noise preamplifier for cryogenically cooled photoconductive i.r. detectors,” Infrared Phys. 14, 165–176 (1974).
[CrossRef]

Baluteau, J.-P.

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

Beeman, J. W.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far IR imaging Fabry-Perot interferometer (FIFI),” Int. J. Infrared Millim. Waves 12, 859–884 (1991).
[CrossRef]

Brasunas, J. C.

Brault, J. W.

Caldwell, M. E.

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

Cunningham, T. J.

T. J. Cunningham, R. C. Gee, E. R. Fossum, S. M. Baier, “Deep cryogenic noise and electrical characterization of the complementary heterojunction field-effect transistor (CHFET),” IEEE Trans. Electron Devices 41, 888–895 (1994).
[CrossRef]

Cushman, G. M.

Dargent, P.

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

Dohlen, K.

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

Ferand, D.

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

Fossum, E. R.

T. J. Cunningham, R. C. Gee, E. R. Fossum, S. M. Baier, “Deep cryogenic noise and electrical characterization of the complementary heterojunction field-effect transistor (CHFET),” IEEE Trans. Electron Devices 41, 888–895 (1994).
[CrossRef]

Frodsham, D. G.

C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A direct coupled low noise preamplifier for cryogenically cooled photoconductive i.r. detectors,” Infrared Phys. 14, 165–176 (1974).
[CrossRef]

Gee, R. C.

T. J. Cunningham, R. C. Gee, E. R. Fossum, S. M. Baier, “Deep cryogenic noise and electrical characterization of the complementary heterojunction field-effect transistor (CHFET),” IEEE Trans. Electron Devices 41, 888–895 (1994).
[CrossRef]

Geis, N.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far IR imaging Fabry-Perot interferometer (FIFI),” Int. J. Infrared Millim. Waves 12, 859–884 (1991).
[CrossRef]

Genzel, R.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far IR imaging Fabry-Perot interferometer (FIFI),” Int. J. Infrared Millim. Waves 12, 859–884 (1991).
[CrossRef]

Gerasimov, F. M.

Griffin, M. J.

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

Haggerty, M.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far IR imaging Fabry-Perot interferometer (FIFI),” Int. J. Infrared Millim. Waves 12, 859–884 (1991).
[CrossRef]

Haller, E. E.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far IR imaging Fabry-Perot interferometer (FIFI),” Int. J. Infrared Millim. Waves 12, 859–884 (1991).
[CrossRef]

Hamilton, P. A.

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

Jackson, J.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far IR imaging Fabry-Perot interferometer (FIFI),” Int. J. Infrared Millim. Waves 12, 859–884 (1991).
[CrossRef]

Jennings, D. E.

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

Lengeler, B.

B. Lengeler, “Semiconductor devices suitable for use in cryogenic environments,” Cryogenics 14, 439–447 (1974).
[CrossRef]

Martignac, J.

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

Michel, G.

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

Naylor, D. A.

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

Ploeger, G. R.

K. J. Wildeman, G. R. Ploeger, D. Snel, J. J. Wijnbergen, “Grating drive for the short wavelength spectrometer in ISO,” Cryogenics 27, 68–72 (1987).
[CrossRef]

Poglitsch, A.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far IR imaging Fabry-Perot interferometer (FIFI),” Int. J. Infrared Millim. Waves 12, 859–884 (1991).
[CrossRef]

Pouliquen, D.

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

Rassudova, G. N.

G. N. Rassudova, “Moire interference fringes in a system consisting of a transmission and a reflection diffraction grating,” Opt. Spectrosc. 22, 73–78 (1967).

Richards, A. G.

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

Rodriguez, L.

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

Rumitz, M.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far IR imaging Fabry-Perot interferometer (FIFI),” Int. J. Infrared Millim. Waves 12, 859–884 (1991).
[CrossRef]

Snavely, B. B.

B. B. Snavely, J. C. Yutzy, “Impedance-transformation circuit for operation at 4.2 K,” Rev. Sci. Instrum. 38, 703–704 (1967).
[CrossRef]

Snel, D.

K. J. Wildeman, G. R. Ploeger, D. Snel, J. J. Wijnbergen, “Grating drive for the short wavelength spectrometer in ISO,” Cryogenics 27, 68–72 (1987).
[CrossRef]

Spies, A.

A. Spies, “Längen in der Ultrapräzisionstechnik messen,” Feinwerktechnik & Messtechnik 98, 406–410 (1990).

Stacey, G. J.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far IR imaging Fabry-Perot interferometer (FIFI),” Int. J. Infrared Millim. Waves 12, 859–884 (1991).
[CrossRef]

Stark, K. W.

K. W. Stark, M. Wilson, “A mirror transport mechanism for use at cryogenic temperature,” in 20th Aerospace Mechanisms Symposium, NASA Conf. Publ. 2423, 73–95 (1986).

Swinyard, B. M.

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

Townes, C. H.

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far IR imaging Fabry-Perot interferometer (FIFI),” Int. J. Infrared Millim. Waves 12, 859–884 (1991).
[CrossRef]

Vukobratovich, D.

D. Vukobratovich, “Lens mounting,” in Introduction to Optomechanical Design, SPIE Short Course SC014 (SPIE, Bellingham, Wash., 2000).

Wijnbergen, J. J.

K. J. Wildeman, G. R. Ploeger, D. Snel, J. J. Wijnbergen, “Grating drive for the short wavelength spectrometer in ISO,” Cryogenics 27, 68–72 (1987).
[CrossRef]

Wildeman, K. J.

K. J. Wildeman, G. R. Ploeger, D. Snel, J. J. Wijnbergen, “Grating drive for the short wavelength spectrometer in ISO,” Cryogenics 27, 68–72 (1987).
[CrossRef]

Wilson, M.

K. W. Stark, M. Wilson, “A mirror transport mechanism for use at cryogenic temperature,” in 20th Aerospace Mechanisms Symposium, NASA Conf. Publ. 2423, 73–95 (1986).

Wyatt, C. L.

C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A direct coupled low noise preamplifier for cryogenically cooled photoconductive i.r. detectors,” Infrared Phys. 14, 165–176 (1974).
[CrossRef]

Yutzy, J. C.

B. B. Snavely, J. C. Yutzy, “Impedance-transformation circuit for operation at 4.2 K,” Rev. Sci. Instrum. 38, 703–704 (1967).
[CrossRef]

20th Aerospace Mechanisms Symposium

K. W. Stark, M. Wilson, “A mirror transport mechanism for use at cryogenic temperature,” in 20th Aerospace Mechanisms Symposium, NASA Conf. Publ. 2423, 73–95 (1986).

Appl. Opt.

Cryogenics

K. J. Wildeman, G. R. Ploeger, D. Snel, J. J. Wijnbergen, “Grating drive for the short wavelength spectrometer in ISO,” Cryogenics 27, 68–72 (1987).
[CrossRef]

B. Lengeler, “Semiconductor devices suitable for use in cryogenic environments,” Cryogenics 14, 439–447 (1974).
[CrossRef]

Feinwerktechnik & Messtechnik

A. Spies, “Längen in der Ultrapräzisionstechnik messen,” Feinwerktechnik & Messtechnik 98, 406–410 (1990).

IEEE Trans. Electron Devices

T. J. Cunningham, R. C. Gee, E. R. Fossum, S. M. Baier, “Deep cryogenic noise and electrical characterization of the complementary heterojunction field-effect transistor (CHFET),” IEEE Trans. Electron Devices 41, 888–895 (1994).
[CrossRef]

Infrared Phys.

C. L. Wyatt, D. J. Baker, D. G. Frodsham, “A direct coupled low noise preamplifier for cryogenically cooled photoconductive i.r. detectors,” Infrared Phys. 14, 165–176 (1974).
[CrossRef]

Int. J. Infrared Millim. Waves

A. Poglitsch, J. W. Beeman, N. Geis, R. Genzel, M. Haggerty, E. E. Haller, J. Jackson, M. Rumitz, G. J. Stacey, C. H. Townes, “The MPE/UCB far IR imaging Fabry-Perot interferometer (FIFI),” Int. J. Infrared Millim. Waves 12, 859–884 (1991).
[CrossRef]

Opt. Spectrosc.

G. N. Rassudova, “Moire interference fringes in a system consisting of a transmission and a reflection diffraction grating,” Opt. Spectrosc. 22, 73–78 (1967).

Rev. Sci. Instrum.

B. B. Snavely, J. C. Yutzy, “Impedance-transformation circuit for operation at 4.2 K,” Rev. Sci. Instrum. 38, 703–704 (1967).
[CrossRef]

Other

B. M. Swinyard, P. A. Ade, M. J. Griffin, K. Dohlen, J.-P. Baluteau, D. Pouliquen, D. Ferand, P. Dargent, G. Michel, J. Martignac, L. Rodriguez, D. E. Jennings, M. E. Caldwell, A. G. Richards, P. A. Hamilton, D. A. Naylor, “FIRST-SPIRE spectrometer: a novel imaging FTS for the submillimeter,” in UV, Optical, and IR Space Telescopes and Instruments, J. B. Breckinridge, P. Jacobsen, eds., Proc. SPIE4013, 196–207 (2000).
[CrossRef]

D. Vukobratovich, “Lens mounting,” in Introduction to Optomechanical Design, SPIE Short Course SC014 (SPIE, Bellingham, Wash., 2000).

“Exposed linear encoders: the interferential measuring principle with single-field scanning (Heidenhain GmbH, Traunreut, Germany, 2002). Documentation available at http://www.heidenhain.com/exposedlinearencoders/lip401A .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Sketch of the Heidenhain LIP 401A sensor.8

Fig. 2
Fig. 2

Equivalent optical diagram showing the three successive diffractions, twice at the transmissive reticle grating and once at the reflective scale grating. Order combinations whose direction corresponds to one of the three detectors are labeled, and thick lines and boldface indicate the principal beams.

Fig. 3
Fig. 3

Sketch of the two versions of the fully redundant focal plane. All the results cited in this paper were obtained with (a) the first focal plane layout. The (b) second layout implemented in the qualified sensor is more compact and reduces vignetting. The Si detectors are labeled 1, 0, -1 in reference to the orders of diffraction.

Fig. 4
Fig. 4

Illustration of the phase modulation induced on the diffracted beam that is due to movements of the grating.

Fig. 5
Fig. 5

Reflection coefficient of the scale grating measured at near-normal incidence in the 600–900-nm range.

Fig. 6
Fig. 6

Ray tracing of the ISG sensor showing the main parts of the system and two different principal beams. Apart from a slight difference in path between the two gratings, the two beams follow identical paths through the system.

Fig. 7
Fig. 7

Wave-front plots generated by ray tracing showing (a) the wave-front error of a beam after double passage through the system and (b) the difference between two interfering wave fronts. Although each beam suffers from approximately 100 wavelengths of coma, the difference is flat to the numerical precision of the calculations.

Fig. 8
Fig. 8

Results of contrast measurements for each focal plane in the first version compared with best-fit sinc functions. FP2 is four times more tolerant to rotation than FP1 because of vignetting.

Fig. 9
Fig. 9

Ray tracing of the sensor head illustrating vignetting for off-axis distances of 1 and 3 mm.

Fig. 10
Fig. 10

Measured contrast as a function of the temperature for the original optical head (circles) and two versions of the modified optical head: four cuts (squares) and eight cuts (triangles). Broken and dotted curves show simulated contrast for a clearance of 0 and 2.5 μm at the grating mount, respectively.

Fig. 11
Fig. 11

Actual modified optical head with eight cuts.

Fig. 12
Fig. 12

Spectra of the selected LED at 300, 77, and 4 K with constant electrical power dissipation of 1 mW.

Fig. 13
Fig. 13

LED optical power versus temperature. The efficiency of the diode peaks close to 85 K. At 4.2 K we lose only 15% of the 300 K emission. The horizontal line represents the optical power at 300 K.

Fig. 14
Fig. 14

LED forward voltage versus temperature.

Fig. 15
Fig. 15

Inside view of the scan mechanism showing the optical head with its flexible-ribbon connection to the cold preamplifier electronics. The scale grating on the moving part of the translation stage supporting the corner cubes is separated from the optical head by a gap of 500 μm. The total displacement is 4 cm.

Fig. 16
Fig. 16

Sketch of a transimpedance amplifier cryogenic preamplifier channel. D4 is a LED and D1 is a detector. The fully redundant focal plane electronics contains two LEDs and six detectors associated with six identical preamplifier channels. VDD and VSS are drain and source power supply voltages, respectively, for the MOSFET transistors.

Fig. 17
Fig. 17

Resolution measurement experimental setup. ADC and PC stand for analog-to-digital converter and personal computer, respectively.

Fig. 18
Fig. 18

Lissajous plot of the quadrature signals after processing the raw fringes issued by the transducer (left) and resolution versus displacement (right). The standard deviation is 8 nm.

Tables (2)

Tables Icon

Table 1 Comparison of Sensor Options

Tables Icon

Table 2 LED Spectral Parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δx=2δΛ2+δΛ2/NG1/2=δΛ5/NG1/2.
v1=v0 sin4πx/Λ,
v2=v0 cos4πx/Λ,
δx=Λ/4π SNR,
v1/v2=tan4πx/Λ=tan4πΔx/Λ,
Δx=Λ/4πarctanv1/v2.

Metrics