Abstract

A rotating machinery test rig was instrumented with fiber Fabry-Perot interferometer strain sensors for condition monitoring of rolling element bearings. Strain variations produced by ball passes were observed and analyzed in the time and frequency domain. Wavelength division multiplexing was utilized to simultaneously monitor the sensors with analog and digital readout systems—analog for high bandwidth and digital for high dynamic range and the monitoring of multiple sensors. The effects of imbalance on the shaft, changes in rotational speed, effects on the rotor system, and detection of bearing defects were investigated. Frequency peaks observed in the bearing sensor spectra closely matched predicted values. Imbalance and rotational speed tests showed good agreement with expected trends, and bearing defects were successfully detected.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Mathew, R. J. Alfredson, “The condition monitoring of rolling element bearings using vibration analysis,” Trans. ASME J. Vib. Acoust. Stress Reliab. Des. 106, 447–453 (1984).
    [CrossRef]
  2. R. C. Eisenmann, R. C. Eisenmann, Machinery Malfunction Diagnosis and Correction: Vibrational Analysis and Trouble Shooting for Process Industries (Prentice-Hall, Upper Saddle River, N.J., 1997).
  3. V. Wowk, Machinery Vibration: Measurement and Analysis (McGraw-Hill, New York, 1991).
  4. E. Udd, Fiber Optic Smart Structures (Wiley, New York, 1995).
  5. C. E. Lee, W. N. Gibler, R. A. Atkins, H. F. Taylor, “In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).
    [CrossRef]
  6. C. D. Butter, G. D. Hocker, “Fiber optics strain gage,” Appl. Opt. 17, 2867–2869 (1978).
    [CrossRef] [PubMed]
  7. W. Lee, J. Lee, C. Henderson, H. F. Taylor, R. James, C. E. Lee, V. Swenson, R. A. Atkins, W. G. Gemeiner, “Railroad bridge instrumentation with fiber-optic sensors,” Appl. Opt. 38, 1110–1114 (1999).
    [CrossRef]
  8. R. A. Atkins, J. H. Gardner, W. N. Gibler, C. E. Lee, M. D. Oakland, M. O. Spears, V. P. Swenson, H. F. Taylor, J. J. McCoy, G. Beshouri, “Fiber-optic pressure sensors for internal combustion engines,” Appl. Opt. 33, 1315–1321 (1994).
    [CrossRef] [PubMed]
  9. R. Sadkowski, C. E. Lee, H. F. Taylor, “Multiplexed interferometric fiber-optic sensors with digital signal processing,” Appl. Opt. 34, 5861–5866 (1995).
    [CrossRef] [PubMed]
  10. J. S. Mitchell, Introduction to Machinery Analysis and Monitoring (PennWell, Tulsa, Okla., 1993).

1999 (1)

1995 (1)

1994 (1)

1992 (1)

C. E. Lee, W. N. Gibler, R. A. Atkins, H. F. Taylor, “In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).
[CrossRef]

1984 (1)

J. Mathew, R. J. Alfredson, “The condition monitoring of rolling element bearings using vibration analysis,” Trans. ASME J. Vib. Acoust. Stress Reliab. Des. 106, 447–453 (1984).
[CrossRef]

1978 (1)

Alfredson, R. J.

J. Mathew, R. J. Alfredson, “The condition monitoring of rolling element bearings using vibration analysis,” Trans. ASME J. Vib. Acoust. Stress Reliab. Des. 106, 447–453 (1984).
[CrossRef]

Atkins, R. A.

Beshouri, G.

Butter, C. D.

Eisenmann, R. C.

R. C. Eisenmann, R. C. Eisenmann, Machinery Malfunction Diagnosis and Correction: Vibrational Analysis and Trouble Shooting for Process Industries (Prentice-Hall, Upper Saddle River, N.J., 1997).

R. C. Eisenmann, R. C. Eisenmann, Machinery Malfunction Diagnosis and Correction: Vibrational Analysis and Trouble Shooting for Process Industries (Prentice-Hall, Upper Saddle River, N.J., 1997).

Gardner, J. H.

Gemeiner, W. G.

Gibler, W. N.

R. A. Atkins, J. H. Gardner, W. N. Gibler, C. E. Lee, M. D. Oakland, M. O. Spears, V. P. Swenson, H. F. Taylor, J. J. McCoy, G. Beshouri, “Fiber-optic pressure sensors for internal combustion engines,” Appl. Opt. 33, 1315–1321 (1994).
[CrossRef] [PubMed]

C. E. Lee, W. N. Gibler, R. A. Atkins, H. F. Taylor, “In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).
[CrossRef]

Henderson, C.

Hocker, G. D.

James, R.

Lee, C. E.

Lee, J.

Lee, W.

Mathew, J.

J. Mathew, R. J. Alfredson, “The condition monitoring of rolling element bearings using vibration analysis,” Trans. ASME J. Vib. Acoust. Stress Reliab. Des. 106, 447–453 (1984).
[CrossRef]

McCoy, J. J.

Mitchell, J. S.

J. S. Mitchell, Introduction to Machinery Analysis and Monitoring (PennWell, Tulsa, Okla., 1993).

Oakland, M. D.

Sadkowski, R.

Spears, M. O.

Swenson, V.

Swenson, V. P.

Taylor, H. F.

Udd, E.

E. Udd, Fiber Optic Smart Structures (Wiley, New York, 1995).

Wowk, V.

V. Wowk, Machinery Vibration: Measurement and Analysis (McGraw-Hill, New York, 1991).

Appl. Opt. (4)

J. Lightwave Technol. (1)

C. E. Lee, W. N. Gibler, R. A. Atkins, H. F. Taylor, “In-line fiber Fabry-Perot interferometer with high-reflectance internal mirrors,” J. Lightwave Technol. 10, 1376–1379 (1992).
[CrossRef]

Trans. ASME J. Vib. Acoust. Stress Reliab. Des. (1)

J. Mathew, R. J. Alfredson, “The condition monitoring of rolling element bearings using vibration analysis,” Trans. ASME J. Vib. Acoust. Stress Reliab. Des. 106, 447–453 (1984).
[CrossRef]

Other (4)

R. C. Eisenmann, R. C. Eisenmann, Machinery Malfunction Diagnosis and Correction: Vibrational Analysis and Trouble Shooting for Process Industries (Prentice-Hall, Upper Saddle River, N.J., 1997).

V. Wowk, Machinery Vibration: Measurement and Analysis (McGraw-Hill, New York, 1991).

E. Udd, Fiber Optic Smart Structures (Wiley, New York, 1995).

J. S. Mitchell, Introduction to Machinery Analysis and Monitoring (PennWell, Tulsa, Okla., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Fiber Fabry-Perot interferometer. R1 and R2, reflectances; L, interferometer cavity length; Pi, input power; Pt, transmitted power; Pr, reflected power.

Fig. 2
Fig. 2

Sensor monitoring setup. LD, laser diode; PD, photodetector; WDM, wavelength division multiplexing.

Fig. 3
Fig. 3

Signal conditioning unit. LD, laser diode; PD, photodiode.

Fig. 4
Fig. 4

FFPI sensor and seven-ball-bearing arrangement [inside diameter (i.d.), 0.375 in. (9.53 mm); outside diameter (o.d.), 0.875 in. (22.23 mm)].

Fig. 5
Fig. 5

Roller bearing test rig. Phototach, phototachometer.

Fig. 6
Fig. 6

Imbalance diagram.

Fig. 7
Fig. 7

Time waveform of bearing at 40-Hz (2400-rpm) rotational speed. P-P, peak-to-peak; Phototach, phototachometer.

Fig. 8
Fig. 8

Spectrum of bearing at 40-Hz (2400-rpm) rotational speed.

Fig. 9
Fig. 9

Rotor with imbalance weights attached (five washers per side at 2 cm from center).

Fig. 10
Fig. 10

Balanced and imbalanced (12.8 g at 2 cm from center) cases at 20 Hz. Phototach, phototachometer.

Fig. 11
Fig. 11

Balanced and imbalanced (12.8 g at 2 cm from center) cases at 40 Hz. Phototach, phototachometer.

Fig. 12
Fig. 12

Rotational sweeps of 1× forces.

Fig. 13
Fig. 13

Ratios of 1× forces to the ten-washer case.

Fig. 14
Fig. 14

Effect of fiber-optic sensor signals of a single impact event. Phototach, phototachometer.

Fig. 15
Fig. 15

Large outer-race defect. Phototach, phototachometer.

Tables (1)

Tables Icon

Table 1 Expected Frequencies of the Seven-Ball Roller Element Bearinga

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

RFP=PrPi=R1+R2+2R1R21/2 cos ϕ,
RFP=PrPi=2R1+cos ϕ.
Δϕ=4πnλ ΔL,
ϕ=4πnLελ1-0.5n2P12-υP11+P12,
I=K1+sin ϕ.
BPOF=N2f601-bPcos ϕ,
FI=mIrIω2,

Metrics