Abstract

Laser-induced breakdown spectroscopy (LIBS) was applied for simultaneous measurement of the elements C, H, N, and O in CO2–air, C3H8–CO2, and C3H8–N2 gas mixtures at atmospheric pressure. A single 7-mm-diameter aperture at the sample chamber was used for 1064-nm Nd:YAG laser irradiation and plasma signal output to an echelle spectrometer. Double-pulse laser bursts of ∼8-ns pulse width (FWHM) and 250-ns interpulse separation were applied to increase the plasma signal. Calibration curves of the LIBS signal versus the partial pressure or the atomic abundance ratios were taken by dilution series in intervals that are relevant in the combustion of heptane (C7H16) near an equivalence ratio of 1.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Ready, Effects of High-Power Laser Radiation (Academic, Orlando, Fla., 1971), pp. 396–399.
  2. C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
    [CrossRef]
  3. M. Tran, B. W. Smith, D. Hahn, J. D. Winefordner, “Detection of gaseous and particulate fluorides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 55, 1455–1461 (2001).
    [CrossRef]
  4. D. H. Plemmons, C. Parigger, J. W. L. Lewis, J. O. Hornkohl, “Analysis of combined spectra of NH and N2,” Appl. Opt. 37, 2493–2498 (1998).
    [CrossRef]
  5. A. H. Schwebel, A. M. Ronn, “Spectroscopy of laser-induced dielectric breakdown in gas mixtures,” Chem. Phys. Lett. 100, 178–182 (1983).
    [CrossRef]
  6. M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
    [CrossRef]
  7. L. J. Radziemski, D. A. Cremers, T. R. Loree, “Detection of beryllium by laser-induced-breakdown spectroscopy,” Spectrochim. Acta Part B 38, 349–355 (1983).
    [CrossRef]
  8. D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1836–1844 (1997).
    [CrossRef]
  9. J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
    [CrossRef]
  10. M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
    [CrossRef]
  11. A. Brysch, V. Sturm, R. Noll, H. Denecke-Arnold, H. Brinkmann, K. Mühlheims, A. Opfermann, K. Mavrommatis, H. W. Gudenau, K. Heinänen, “Laser-based elemental analysis of the top gas of a blast furnace,” in Proceedings of International Symposium on Photonics in Measurement, VDI-Berichte 1694 (VDI Verlag, Düsseldorf, Germany, 2002), pp. 117–123.
  12. I. Glassman, Combustion (Academic, San Diego, Calif., 1996), pp. 20–29.
  13. A. K. Sandrowitz, J. M. Cooke, N. G. Glumac, “Flame emission spectroscopy for equivalence ratio monitoring,” Appl. Spectrosc. 52, 658–662 (1998).
    [CrossRef]
  14. R. W. Schmieder, “Combustion applications of laser-induced breakdown spectroscopy,” in Proceedings of the Electro-Optics Laser Conference (Cahners, Chicago, Ill., 1981), pp. 17–27.
  15. T. X. Phuoc, F. P. White, “Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81, 1761–1765 (2002).
    [CrossRef]
  16. R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
    [CrossRef]
  17. V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
    [CrossRef]
  18. K. Fieweger, R. Blumenthal, G. Adomeit, “Self-ignition of S.I. engine model fuels: shock tube investigation at high pressure,” Combust. Flame 109, 599–619 (1997).
    [CrossRef]
  19. K. Kuwahara, H. Ando, “Diagnostics of in-cylinder flow, mixing and combustion in gasoline engines,” Meas. Sci. Technol. 11, R95–R111 (2000).
    [CrossRef]
  20. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 73rd ed. (CRC Press, Boca Raton, Fla., 1992), p. 14–11.

2002

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

T. X. Phuoc, F. P. White, “Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81, 1761–1765 (2002).
[CrossRef]

2001

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

M. Tran, B. W. Smith, D. Hahn, J. D. Winefordner, “Detection of gaseous and particulate fluorides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 55, 1455–1461 (2001).
[CrossRef]

2000

K. Kuwahara, H. Ando, “Diagnostics of in-cylinder flow, mixing and combustion in gasoline engines,” Meas. Sci. Technol. 11, R95–R111 (2000).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

1998

1997

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1836–1844 (1997).
[CrossRef]

K. Fieweger, R. Blumenthal, G. Adomeit, “Self-ignition of S.I. engine model fuels: shock tube investigation at high pressure,” Combust. Flame 109, 599–619 (1997).
[CrossRef]

1996

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

1995

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

1991

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

1983

L. J. Radziemski, D. A. Cremers, T. R. Loree, “Detection of beryllium by laser-induced-breakdown spectroscopy,” Spectrochim. Acta Part B 38, 349–355 (1983).
[CrossRef]

A. H. Schwebel, A. M. Ronn, “Spectroscopy of laser-induced dielectric breakdown in gas mixtures,” Chem. Phys. Lett. 100, 178–182 (1983).
[CrossRef]

Adomeit, G.

K. Fieweger, R. Blumenthal, G. Adomeit, “Self-ignition of S.I. engine model fuels: shock tube investigation at high pressure,” Combust. Flame 109, 599–619 (1997).
[CrossRef]

Ando, H.

K. Kuwahara, H. Ando, “Diagnostics of in-cylinder flow, mixing and combustion in gasoline engines,” Meas. Sci. Technol. 11, R95–R111 (2000).
[CrossRef]

Blumenthal, R.

K. Fieweger, R. Blumenthal, G. Adomeit, “Self-ignition of S.I. engine model fuels: shock tube investigation at high pressure,” Combust. Flame 109, 599–619 (1997).
[CrossRef]

Brinkmann, H.

A. Brysch, V. Sturm, R. Noll, H. Denecke-Arnold, H. Brinkmann, K. Mühlheims, A. Opfermann, K. Mavrommatis, H. W. Gudenau, K. Heinänen, “Laser-based elemental analysis of the top gas of a blast furnace,” in Proceedings of International Symposium on Photonics in Measurement, VDI-Berichte 1694 (VDI Verlag, Düsseldorf, Germany, 2002), pp. 117–123.

Brysch, A.

A. Brysch, V. Sturm, R. Noll, H. Denecke-Arnold, H. Brinkmann, K. Mühlheims, A. Opfermann, K. Mavrommatis, H. W. Gudenau, K. Heinänen, “Laser-based elemental analysis of the top gas of a blast furnace,” in Proceedings of International Symposium on Photonics in Measurement, VDI-Berichte 1694 (VDI Verlag, Düsseldorf, Germany, 2002), pp. 117–123.

Carranza, J. E.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

Casini, M.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Cooke, J. M.

Cremers, D. A.

L. J. Radziemski, D. A. Cremers, T. R. Loree, “Detection of beryllium by laser-induced-breakdown spectroscopy,” Spectrochim. Acta Part B 38, 349–355 (1983).
[CrossRef]

Deguchi, Y.

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

Denecke-Arnold, H.

A. Brysch, V. Sturm, R. Noll, H. Denecke-Arnold, H. Brinkmann, K. Mühlheims, A. Opfermann, K. Mavrommatis, H. W. Gudenau, K. Heinänen, “Laser-based elemental analysis of the top gas of a blast furnace,” in Proceedings of International Symposium on Photonics in Measurement, VDI-Berichte 1694 (VDI Verlag, Düsseldorf, Germany, 2002), pp. 117–123.

Fieweger, K.

K. Fieweger, R. Blumenthal, G. Adomeit, “Self-ignition of S.I. engine model fuels: shock tube investigation at high pressure,” Combust. Flame 109, 599–619 (1997).
[CrossRef]

Fisher, B. T.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

Flower, W. L.

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1836–1844 (1997).
[CrossRef]

Glassman, I.

I. Glassman, Combustion (Academic, San Diego, Calif., 1996), pp. 20–29.

Glumac, N. G.

Gudenau, H. W.

A. Brysch, V. Sturm, R. Noll, H. Denecke-Arnold, H. Brinkmann, K. Mühlheims, A. Opfermann, K. Mavrommatis, H. W. Gudenau, K. Heinänen, “Laser-based elemental analysis of the top gas of a blast furnace,” in Proceedings of International Symposium on Photonics in Measurement, VDI-Berichte 1694 (VDI Verlag, Düsseldorf, Germany, 2002), pp. 117–123.

Hahn, D.

Hahn, D. W.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1836–1844 (1997).
[CrossRef]

Haisch, C.

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

Harith, M. A.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Heinänen, K.

A. Brysch, V. Sturm, R. Noll, H. Denecke-Arnold, H. Brinkmann, K. Mühlheims, A. Opfermann, K. Mavrommatis, H. W. Gudenau, K. Heinänen, “Laser-based elemental analysis of the top gas of a blast furnace,” in Proceedings of International Symposium on Photonics in Measurement, VDI-Berichte 1694 (VDI Verlag, Düsseldorf, Germany, 2002), pp. 117–123.

Hencken, K. R.

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 12, 1836–1844 (1997).
[CrossRef]

Hornkohl, J. O.

Iwasaki, S.

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

Kuwahara, K.

K. Kuwahara, H. Ando, “Diagnostics of in-cylinder flow, mixing and combustion in gasoline engines,” Meas. Sci. Technol. 11, R95–R111 (2000).
[CrossRef]

Lewis, J. W. L.

Loree, T. R.

L. J. Radziemski, D. A. Cremers, T. R. Loree, “Detection of beryllium by laser-induced-breakdown spectroscopy,” Spectrochim. Acta Part B 38, 349–355 (1983).
[CrossRef]

Matveev, O. I.

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

Mavrommatis, K.

A. Brysch, V. Sturm, R. Noll, H. Denecke-Arnold, H. Brinkmann, K. Mühlheims, A. Opfermann, K. Mavrommatis, H. W. Gudenau, K. Heinänen, “Laser-based elemental analysis of the top gas of a blast furnace,” in Proceedings of International Symposium on Photonics in Measurement, VDI-Berichte 1694 (VDI Verlag, Düsseldorf, Germany, 2002), pp. 117–123.

Mühlheims, K.

A. Brysch, V. Sturm, R. Noll, H. Denecke-Arnold, H. Brinkmann, K. Mühlheims, A. Opfermann, K. Mavrommatis, H. W. Gudenau, K. Heinänen, “Laser-based elemental analysis of the top gas of a blast furnace,” in Proceedings of International Symposium on Photonics in Measurement, VDI-Berichte 1694 (VDI Verlag, Düsseldorf, Germany, 2002), pp. 117–123.

Niessner, R.

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

Noda, M.

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

Noll, R.

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

A. Brysch, V. Sturm, R. Noll, H. Denecke-Arnold, H. Brinkmann, K. Mühlheims, A. Opfermann, K. Mavrommatis, H. W. Gudenau, K. Heinänen, “Laser-based elemental analysis of the top gas of a blast furnace,” in Proceedings of International Symposium on Photonics in Measurement, VDI-Berichte 1694 (VDI Verlag, Düsseldorf, Germany, 2002), pp. 117–123.

Omenetto, N.

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

Opfermann, A.

A. Brysch, V. Sturm, R. Noll, H. Denecke-Arnold, H. Brinkmann, K. Mühlheims, A. Opfermann, K. Mavrommatis, H. W. Gudenau, K. Heinänen, “Laser-based elemental analysis of the top gas of a blast furnace,” in Proceedings of International Symposium on Photonics in Measurement, VDI-Berichte 1694 (VDI Verlag, Düsseldorf, Germany, 2002), pp. 117–123.

Palleschi, V.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Panne, U.

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

Parigger, C.

Peter, L.

Phuoc, T. X.

T. X. Phuoc, F. P. White, “Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81, 1761–1765 (2002).
[CrossRef]

Plemmons, D. H.

Radziemski, L. J.

L. J. Radziemski, D. A. Cremers, T. R. Loree, “Detection of beryllium by laser-induced-breakdown spectroscopy,” Spectrochim. Acta Part B 38, 349–355 (1983).
[CrossRef]

Ready, J. F.

J. F. Ready, Effects of High-Power Laser Radiation (Academic, Orlando, Fla., 1971), pp. 396–399.

Ronn, A. M.

A. H. Schwebel, A. M. Ronn, “Spectroscopy of laser-induced dielectric breakdown in gas mixtures,” Chem. Phys. Lett. 100, 178–182 (1983).
[CrossRef]

Salvetti, A.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Sandrowitz, A. K.

Sattmann, R.

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

Schmieder, R. W.

R. W. Schmieder, “Combustion applications of laser-induced breakdown spectroscopy,” in Proceedings of the Electro-Optics Laser Conference (Cahners, Chicago, Ill., 1981), pp. 17–27.

Schwebel, A. H.

A. H. Schwebel, A. M. Ronn, “Spectroscopy of laser-induced dielectric breakdown in gas mixtures,” Chem. Phys. Lett. 100, 178–182 (1983).
[CrossRef]

Singh, D. P.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Smith, B. W.

Sturm, V.

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

A. Brysch, V. Sturm, R. Noll, H. Denecke-Arnold, H. Brinkmann, K. Mühlheims, A. Opfermann, K. Mavrommatis, H. W. Gudenau, K. Heinänen, “Laser-based elemental analysis of the top gas of a blast furnace,” in Proceedings of International Symposium on Photonics in Measurement, VDI-Berichte 1694 (VDI Verlag, Düsseldorf, Germany, 2002), pp. 117–123.

Tran, M.

Vaselli, M.

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

White, F. P.

T. X. Phuoc, F. P. White, “Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81, 1761–1765 (2002).
[CrossRef]

Winefordner, J. D.

Yoder, G. D.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

Yoshikawa, N.

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Chem. Phys. Lett.

A. H. Schwebel, A. M. Ronn, “Spectroscopy of laser-induced dielectric breakdown in gas mixtures,” Chem. Phys. Lett. 100, 178–182 (1983).
[CrossRef]

Combust. Flame

K. Fieweger, R. Blumenthal, G. Adomeit, “Self-ignition of S.I. engine model fuels: shock tube investigation at high pressure,” Combust. Flame 109, 599–619 (1997).
[CrossRef]

Fresenius J. Anal. Chem.

C. Haisch, R. Niessner, O. I. Matveev, U. Panne, N. Omenetto, “Element-specific determination of chlorine in gases by laser-induced-breakdown-spectroscopy (LIBS),” Fresenius J. Anal. Chem. 356, 21–26 (1996).
[CrossRef]

Fuel

T. X. Phuoc, F. P. White, “Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81, 1761–1765 (2002).
[CrossRef]

J. Phys. D

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

Laser Part. Beams

M. Casini, M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, M. Vaselli, “Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air,” Laser Part. Beams 9, 633–639 (1991).
[CrossRef]

Meas. Sci. Technol.

K. Kuwahara, H. Ando, “Diagnostics of in-cylinder flow, mixing and combustion in gasoline engines,” Meas. Sci. Technol. 11, R95–R111 (2000).
[CrossRef]

Spectrochim. Acta Part B

L. J. Radziemski, D. A. Cremers, T. R. Loree, “Detection of beryllium by laser-induced-breakdown spectroscopy,” Spectrochim. Acta Part B 38, 349–355 (1983).
[CrossRef]

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 851–864 (2001).
[CrossRef]

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 701–709 (2002).
[CrossRef]

Other

A. Brysch, V. Sturm, R. Noll, H. Denecke-Arnold, H. Brinkmann, K. Mühlheims, A. Opfermann, K. Mavrommatis, H. W. Gudenau, K. Heinänen, “Laser-based elemental analysis of the top gas of a blast furnace,” in Proceedings of International Symposium on Photonics in Measurement, VDI-Berichte 1694 (VDI Verlag, Düsseldorf, Germany, 2002), pp. 117–123.

I. Glassman, Combustion (Academic, San Diego, Calif., 1996), pp. 20–29.

R. W. Schmieder, “Combustion applications of laser-induced breakdown spectroscopy,” in Proceedings of the Electro-Optics Laser Conference (Cahners, Chicago, Ill., 1981), pp. 17–27.

J. F. Ready, Effects of High-Power Laser Radiation (Academic, Orlando, Fla., 1971), pp. 396–399.

D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 73rd ed. (CRC Press, Boca Raton, Fla., 1992), p. 14–11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spectral emission of (a) C and (b) N and O for partial pressures of 0.2177 kPa (CO2) and 99.782 kPa (air), respectively. This mixture results from step i = 12 of the dilution series that starts with pure CO2 to which air is added.

Fig. 2
Fig. 2

Spectral peak area of the C (I) 247.9-nm emission line versus the fractional atomic abundance of C. The horizontal error bars are estimated from the added relative errors (times step number i) of the measured pressures p 1 and p 2, with an uncertainty in the manometer of 1% of the final value (200 kPa) which means 2% at 100 kPa for each pressure value, taken into account.

Fig. 3
Fig. 3

Ratio of the spectral peak area of the O (I) 777-nm and the C (I) 247.9-nm emission lines versus the atomic abundance ratio O/C from the same dilution series as in Fig. 2.

Fig. 4
Fig. 4

Ratio of the spectral peak area of the O (I) 777-nm and the C (I) 247.9-nm emission lines versus the partial pressure ratio of CO2 to C3H8 for a dilution series that starts with pure propane to which CO2 is added.

Fig. 5
Fig. 5

Ratio of spectral peak value I pk,H656 of the Hα line at 656.2 nm and spectral peak area I C247 of C (I) 247.9 nm versus the atomic abundance ratio H/C. Same dilution series as in Fig. 4.

Fig. 6
Fig. 6

Ratio of the spectral peak area of the O (I) 777-nm line and the spectral peak value I pk,H656 of the Hα line at 656.2 nm versus the atomic abundance ratio O/H. Same dilution series as in Fig. 4.

Fig. 7
Fig. 7

Ratio of the spectral peak area of the N (I) emission lines within 741.7–748.3 nm and C (I) at 247.9 nm versus the atomic abundance ratio N/C for a dilution series that starts with pure propane to which N2 is added.

Fig. 8
Fig. 8

Spectral peak area of CN emission within 370.3–389.0 nm versus the atomic abundance ratio N/C measured simultaneously during the dilution series of Fig. 7.

Metrics