Abstract

The use of laser-induced breakdown spectrometry (LIBS) for the analysis of heavy metals and brominated flame retardants in end-of-life waste electric and electronic equipment (EOL-WEEE) pieces is investigated. Single- and double-pulse plasma excitation as well as the influence of detection parameters is studied to yield a parameter field with improved sensitivity and limits of detection. A LIBS analyzer was set up as an on-line measuring unit to detect heavy metals and brominated flame retardants in moving EOL-WEEE pieces in an automatic sorting line. An autofocusing unit with an adjustment range of 50 mm was incorporated to permit measurements of objects that pass by a LIBS analyzer with their surfaces at various distances from it. Tests with EOL-WEEE monitor housings on the conveyor belt of a pilot sorting system successfully demonstrated the capability of the LIBS analyzer to quantify the concentration of hazardous elements in real waste EOL-WEEE pieces.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ullmann’s Encyclopedia of Industrial Chemistry, (VCH, Weinheim, Germany, 1992), Vol. A 20.
  2. European Commission Research Project, “Development of multipurpose industrial units for recycling of plastic wastes by on-line pattern recognition of polymer features (Sure-Plast),” contract BRPR-CT98-0783, project BE97-4890 (European Commission, 2001).
  3. J. Marshall, J. Carrol, J. S. Crighton, C. L. R. Barnard, “Industrial analysis: metals, chemicals and advanced materials,” J. Anal. At. Spectrom. 9, 319–356 (1994).
    [CrossRef]
  4. R. Zenobi, “Modern laser mass spectrometry,” Fresenius J. Anal. Chem. 348, 506–509 (1994).
    [CrossRef]
  5. C. Lazik, R. K. Marcus, “Electrical and optical characteristics of a radio frequency glow discharge atomic emission source with dielectric sample atomization,” Spectrochim. Acta Part B 48, 1673–1689 (1993).
    [CrossRef]
  6. Z. Weiss, “New method of calibration for glow discharge optical emission spectrometry,” J. Anal. At. Spectrom. 9, 351–354 (1994).
    [CrossRef]
  7. A. Golloch, D. Siegmund, “Sliding spark spectroscopy—rapid survey analysis of flame retardants and other additives in polymers,” Fresenius J. Anal. Chem. 358, 804–811 (1997).
    [CrossRef]
  8. R. Gijbels, “Elemental analysis of high-purity solids by mass spectrometry,” Tantala 37, 363–376 (1990).
    [CrossRef]
  9. R. Sattmann, I. Mönch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456–461 (1998).
    [CrossRef]
  10. J. M. Anzano, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Laser-induced plasma spectroscopy for plastic identification,” Polymer Eng. Sci. 40, 2423–2429 (2000).
    [CrossRef]
  11. M. Tran, Q. Sun, B. W. Smith, J. D. Winefordner, “Determination of F, Cl and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–744 (2001).
    [CrossRef]
  12. H. Fink, U. Panne, R. Niessner, “Analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Anal. Chim. Acta 440, 17–25 (2001).
    [CrossRef]
  13. H. Fink, U. Panne, R. Niessner, “Process analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Anal. Chem. 74, 4334–4342 (2002).
    [CrossRef] [PubMed]
  14. National Institute of Standards and Technology Atomic Spectra Data Base, http://physics.nist.gov/cgi-bin/AtData/main_asd .
  15. H. Bette, R. Noll, G. Müller, H.-W. Jansen, C. Nazikkol, H. Mittelstädt, “High-speed scanning LIBS at 1000 Hz with single pulse evaluation for the detection of inclusions in steel,” in Proceedings of the 6th International Workshop on Progress in Analytical Chemistry in the Steel and Metals Industries 2002,D. Sommer, ed. (to be published).
  16. M. Kraushaar, R. Noll, H.-U. Schmitz, “Slag analysis with laser-induced breakdown spectrometry,” Appl. Spectrosc. (to be published).
  17. L. St-Onge, E. Kwong, M. Sabsabi, E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
    [CrossRef]
  18. R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
    [CrossRef]
  19. R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
    [CrossRef]
  20. R. Sattmann, I. Mönch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456–461 (1998).
    [CrossRef]
  21. L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
    [CrossRef]
  22. V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
    [CrossRef]
  23. D. Stratis, K. Eland, M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
    [CrossRef]
  24. L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
    [CrossRef]
  25. F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminium samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
    [CrossRef]
  26. National Standard of Germany, DIN 53804-1, Statistische Auswertung, Teil 1: Kontinuierliche Merkmale (Deutsches Institut Für Normung e.V, Berlin, April2002).
  27. A. M. Dobney, A. J. G. Mank, K. H. Grobecker, P. Conneely, C. G. de Koster, “Laser ablation inductively coupled plasma mass spectrometry as a tool for studying heterogeneity within polymers,” Anal. Chim. Acta 423, 9–19 (2000).
    [CrossRef]
  28. R. Kaiser, W. Gottschalk, Elementare Tests zur Beurteilung von Messdaten (Biographisches Institut, Mannheim, Germany, 1984).
  29. National Standard of Germany, DIN 32 645, Nachweis-, Erfassungs-und Bestimmungsgrenze, (Deutsches Institut für Normung e.V, Berlin, May1994).
  30. A. Cremers, D. J. Romero, “An evaluation of factors affecting the analysis of metals using laser-induced breakdown spectroscopy (LIBS),” in Remote Sensing, R. T. Menzies, ed., Proc. SPIE644, 7–12 (1986).
    [CrossRef]

2002

H. Fink, U. Panne, R. Niessner, “Process analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Anal. Chem. 74, 4334–4342 (2002).
[CrossRef] [PubMed]

L. St-Onge, E. Kwong, M. Sabsabi, E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminium samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

2001

2000

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

J. M. Anzano, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Laser-induced plasma spectroscopy for plastic identification,” Polymer Eng. Sci. 40, 2423–2429 (2000).
[CrossRef]

A. M. Dobney, A. J. G. Mank, K. H. Grobecker, P. Conneely, C. G. de Koster, “Laser ablation inductively coupled plasma mass spectrometry as a tool for studying heterogeneity within polymers,” Anal. Chim. Acta 423, 9–19 (2000).
[CrossRef]

1998

1997

A. Golloch, D. Siegmund, “Sliding spark spectroscopy—rapid survey analysis of flame retardants and other additives in polymers,” Fresenius J. Anal. Chem. 358, 804–811 (1997).
[CrossRef]

1995

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

1994

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

J. Marshall, J. Carrol, J. S. Crighton, C. L. R. Barnard, “Industrial analysis: metals, chemicals and advanced materials,” J. Anal. At. Spectrom. 9, 319–356 (1994).
[CrossRef]

R. Zenobi, “Modern laser mass spectrometry,” Fresenius J. Anal. Chem. 348, 506–509 (1994).
[CrossRef]

Z. Weiss, “New method of calibration for glow discharge optical emission spectrometry,” J. Anal. At. Spectrom. 9, 351–354 (1994).
[CrossRef]

1993

C. Lazik, R. K. Marcus, “Electrical and optical characteristics of a radio frequency glow discharge atomic emission source with dielectric sample atomization,” Spectrochim. Acta Part B 48, 1673–1689 (1993).
[CrossRef]

1990

R. Gijbels, “Elemental analysis of high-purity solids by mass spectrometry,” Tantala 37, 363–376 (1990).
[CrossRef]

Angel, M.

Anzano, J. M.

J. M. Anzano, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Laser-induced plasma spectroscopy for plastic identification,” Polymer Eng. Sci. 40, 2423–2429 (2000).
[CrossRef]

Barnard, C. L. R.

J. Marshall, J. Carrol, J. S. Crighton, C. L. R. Barnard, “Industrial analysis: metals, chemicals and advanced materials,” J. Anal. At. Spectrom. 9, 319–356 (1994).
[CrossRef]

Bette, H.

H. Bette, R. Noll, G. Müller, H.-W. Jansen, C. Nazikkol, H. Mittelstädt, “High-speed scanning LIBS at 1000 Hz with single pulse evaluation for the detection of inclusions in steel,” in Proceedings of the 6th International Workshop on Progress in Analytical Chemistry in the Steel and Metals Industries 2002,D. Sommer, ed. (to be published).

Carrol, J.

J. Marshall, J. Carrol, J. S. Crighton, C. L. R. Barnard, “Industrial analysis: metals, chemicals and advanced materials,” J. Anal. At. Spectrom. 9, 319–356 (1994).
[CrossRef]

Cielo, P.

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

Colao, F.

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminium samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

Conneely, P.

A. M. Dobney, A. J. G. Mank, K. H. Grobecker, P. Conneely, C. G. de Koster, “Laser ablation inductively coupled plasma mass spectrometry as a tool for studying heterogeneity within polymers,” Anal. Chim. Acta 423, 9–19 (2000).
[CrossRef]

Couris, S.

Cremers, A.

A. Cremers, D. J. Romero, “An evaluation of factors affecting the analysis of metals using laser-induced breakdown spectroscopy (LIBS),” in Remote Sensing, R. T. Menzies, ed., Proc. SPIE644, 7–12 (1986).
[CrossRef]

Crighton, J. S.

J. Marshall, J. Carrol, J. S. Crighton, C. L. R. Barnard, “Industrial analysis: metals, chemicals and advanced materials,” J. Anal. At. Spectrom. 9, 319–356 (1994).
[CrossRef]

de Koster, C. G.

A. M. Dobney, A. J. G. Mank, K. H. Grobecker, P. Conneely, C. G. de Koster, “Laser ablation inductively coupled plasma mass spectrometry as a tool for studying heterogeneity within polymers,” Anal. Chim. Acta 423, 9–19 (2000).
[CrossRef]

Detalle, V.

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

Dobney, A. M.

A. M. Dobney, A. J. G. Mank, K. H. Grobecker, P. Conneely, C. G. de Koster, “Laser ablation inductively coupled plasma mass spectrometry as a tool for studying heterogeneity within polymers,” Anal. Chim. Acta 423, 9–19 (2000).
[CrossRef]

Eland, K.

Fantoni, R.

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminium samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

Fink, H.

H. Fink, U. Panne, R. Niessner, “Process analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Anal. Chem. 74, 4334–4342 (2002).
[CrossRef] [PubMed]

H. Fink, U. Panne, R. Niessner, “Analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Anal. Chim. Acta 440, 17–25 (2001).
[CrossRef]

Fotakis, C.

Gijbels, R.

R. Gijbels, “Elemental analysis of high-purity solids by mass spectrometry,” Tantala 37, 363–376 (1990).
[CrossRef]

Golloch, A.

A. Golloch, D. Siegmund, “Sliding spark spectroscopy—rapid survey analysis of flame retardants and other additives in polymers,” Fresenius J. Anal. Chem. 358, 804–811 (1997).
[CrossRef]

Gornushkin, I. B.

J. M. Anzano, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Laser-induced plasma spectroscopy for plastic identification,” Polymer Eng. Sci. 40, 2423–2429 (2000).
[CrossRef]

Gottschalk, W.

R. Kaiser, W. Gottschalk, Elementare Tests zur Beurteilung von Messdaten (Biographisches Institut, Mannheim, Germany, 1984).

Grobecker, K. H.

A. M. Dobney, A. J. G. Mank, K. H. Grobecker, P. Conneely, C. G. de Koster, “Laser ablation inductively coupled plasma mass spectrometry as a tool for studying heterogeneity within polymers,” Anal. Chim. Acta 423, 9–19 (2000).
[CrossRef]

Hatziapostolou, A.

Jansen, H.-W.

H. Bette, R. Noll, G. Müller, H.-W. Jansen, C. Nazikkol, H. Mittelstädt, “High-speed scanning LIBS at 1000 Hz with single pulse evaluation for the detection of inclusions in steel,” in Proceedings of the 6th International Workshop on Progress in Analytical Chemistry in the Steel and Metals Industries 2002,D. Sommer, ed. (to be published).

Kaiser, R.

R. Kaiser, W. Gottschalk, Elementare Tests zur Beurteilung von Messdaten (Biographisches Institut, Mannheim, Germany, 1984).

Kompa, K.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Krause, H.

Kraushaar, M.

M. Kraushaar, R. Noll, H.-U. Schmitz, “Slag analysis with laser-induced breakdown spectrometry,” Appl. Spectrosc. (to be published).

Kwong, E.

L. St-Onge, E. Kwong, M. Sabsabi, E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

Larrauri, E.

Lazic, V.

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminium samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

Lazik, C.

C. Lazik, R. K. Marcus, “Electrical and optical characteristics of a radio frequency glow discharge atomic emission source with dielectric sample atomization,” Spectrochim. Acta Part B 48, 1673–1689 (1993).
[CrossRef]

Mank, A. J. G.

A. M. Dobney, A. J. G. Mank, K. H. Grobecker, P. Conneely, C. G. de Koster, “Laser ablation inductively coupled plasma mass spectrometry as a tool for studying heterogeneity within polymers,” Anal. Chim. Acta 423, 9–19 (2000).
[CrossRef]

Marcus, R. K.

C. Lazik, R. K. Marcus, “Electrical and optical characteristics of a radio frequency glow discharge atomic emission source with dielectric sample atomization,” Spectrochim. Acta Part B 48, 1673–1689 (1993).
[CrossRef]

Marshall, J.

J. Marshall, J. Carrol, J. S. Crighton, C. L. R. Barnard, “Industrial analysis: metals, chemicals and advanced materials,” J. Anal. At. Spectrom. 9, 319–356 (1994).
[CrossRef]

Mavromanolakis, A.

Miguel, R.

Mittelstädt, H.

H. Bette, R. Noll, G. Müller, H.-W. Jansen, C. Nazikkol, H. Mittelstädt, “High-speed scanning LIBS at 1000 Hz with single pulse evaluation for the detection of inclusions in steel,” in Proceedings of the 6th International Workshop on Progress in Analytical Chemistry in the Steel and Metals Industries 2002,D. Sommer, ed. (to be published).

Mönch, I.

Müller, G.

H. Bette, R. Noll, G. Müller, H.-W. Jansen, C. Nazikkol, H. Mittelstädt, “High-speed scanning LIBS at 1000 Hz with single pulse evaluation for the detection of inclusions in steel,” in Proceedings of the 6th International Workshop on Progress in Analytical Chemistry in the Steel and Metals Industries 2002,D. Sommer, ed. (to be published).

Nazikkol, C.

H. Bette, R. Noll, G. Müller, H.-W. Jansen, C. Nazikkol, H. Mittelstädt, “High-speed scanning LIBS at 1000 Hz with single pulse evaluation for the detection of inclusions in steel,” in Proceedings of the 6th International Workshop on Progress in Analytical Chemistry in the Steel and Metals Industries 2002,D. Sommer, ed. (to be published).

Niessner, R.

H. Fink, U. Panne, R. Niessner, “Process analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Anal. Chem. 74, 4334–4342 (2002).
[CrossRef] [PubMed]

H. Fink, U. Panne, R. Niessner, “Analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Anal. Chim. Acta 440, 17–25 (2001).
[CrossRef]

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Noll, R.

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

R. Sattmann, I. Mönch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456–461 (1998).
[CrossRef]

R. Sattmann, I. Mönch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456–461 (1998).
[CrossRef]

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

H. Bette, R. Noll, G. Müller, H.-W. Jansen, C. Nazikkol, H. Mittelstädt, “High-speed scanning LIBS at 1000 Hz with single pulse evaluation for the detection of inclusions in steel,” in Proceedings of the 6th International Workshop on Progress in Analytical Chemistry in the Steel and Metals Industries 2002,D. Sommer, ed. (to be published).

M. Kraushaar, R. Noll, H.-U. Schmitz, “Slag analysis with laser-induced breakdown spectrometry,” Appl. Spectrosc. (to be published).

Panne, U.

H. Fink, U. Panne, R. Niessner, “Process analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Anal. Chem. 74, 4334–4342 (2002).
[CrossRef] [PubMed]

H. Fink, U. Panne, R. Niessner, “Analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Anal. Chim. Acta 440, 17–25 (2001).
[CrossRef]

Pershin, S.

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminium samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

Peter, L.

Romero, D. J.

A. Cremers, D. J. Romero, “An evaluation of factors affecting the analysis of metals using laser-induced breakdown spectroscopy (LIBS),” in Remote Sensing, R. T. Menzies, ed., Proc. SPIE644, 7–12 (1986).
[CrossRef]

Sabsabi, M.

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

L. St-Onge, E. Kwong, M. Sabsabi, E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

Sattmann, R.

Schechter, I.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Schmitz, H.-U.

M. Kraushaar, R. Noll, H.-U. Schmitz, “Slag analysis with laser-induced breakdown spectrometry,” Appl. Spectrosc. (to be published).

Schroder, H.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Siegmund, D.

A. Golloch, D. Siegmund, “Sliding spark spectroscopy—rapid survey analysis of flame retardants and other additives in polymers,” Fresenius J. Anal. Chem. 358, 804–811 (1997).
[CrossRef]

Smith, B. W.

M. Tran, Q. Sun, B. W. Smith, J. D. Winefordner, “Determination of F, Cl and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–744 (2001).
[CrossRef]

J. M. Anzano, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Laser-induced plasma spectroscopy for plastic identification,” Polymer Eng. Sci. 40, 2423–2429 (2000).
[CrossRef]

St-Onge, L.

L. St-Onge, E. Kwong, M. Sabsabi, E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

Stratis, D.

Sturm, V.

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

Sun, Q.

Tran, M.

Vadas, E. B.

L. St-Onge, E. Kwong, M. Sabsabi, E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

Weiss, Z.

Z. Weiss, “New method of calibration for glow discharge optical emission spectrometry,” J. Anal. At. Spectrom. 9, 351–354 (1994).
[CrossRef]

Winefordner, J. D.

M. Tran, Q. Sun, B. W. Smith, J. D. Winefordner, “Determination of F, Cl and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–744 (2001).
[CrossRef]

J. M. Anzano, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Laser-induced plasma spectroscopy for plastic identification,” Polymer Eng. Sci. 40, 2423–2429 (2000).
[CrossRef]

Wisbrun, R.

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Zenobi, R.

R. Zenobi, “Modern laser mass spectrometry,” Fresenius J. Anal. Chem. 348, 506–509 (1994).
[CrossRef]

Anal. Chem.

H. Fink, U. Panne, R. Niessner, “Process analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Anal. Chem. 74, 4334–4342 (2002).
[CrossRef] [PubMed]

R. Wisbrun, I. Schechter, R. Niessner, H. Schroder, K. Kompa, “Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy,” Anal. Chem. 66, 2964–2975 (1994).
[CrossRef]

Anal. Chim. Acta

A. M. Dobney, A. J. G. Mank, K. H. Grobecker, P. Conneely, C. G. de Koster, “Laser ablation inductively coupled plasma mass spectrometry as a tool for studying heterogeneity within polymers,” Anal. Chim. Acta 423, 9–19 (2000).
[CrossRef]

H. Fink, U. Panne, R. Niessner, “Analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy,” Anal. Chim. Acta 440, 17–25 (2001).
[CrossRef]

Appl. Spectrosc.

Fresenius J. Anal. Chem.

R. Zenobi, “Modern laser mass spectrometry,” Fresenius J. Anal. Chem. 348, 506–509 (1994).
[CrossRef]

A. Golloch, D. Siegmund, “Sliding spark spectroscopy—rapid survey analysis of flame retardants and other additives in polymers,” Fresenius J. Anal. Chem. 358, 804–811 (1997).
[CrossRef]

J. Anal. At. Spectrom.

J. Marshall, J. Carrol, J. S. Crighton, C. L. R. Barnard, “Industrial analysis: metals, chemicals and advanced materials,” J. Anal. At. Spectrom. 9, 319–356 (1994).
[CrossRef]

Z. Weiss, “New method of calibration for glow discharge optical emission spectrometry,” J. Anal. At. Spectrom. 9, 351–354 (1994).
[CrossRef]

J. Phys. D

R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

Polymer Eng. Sci.

J. M. Anzano, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Laser-induced plasma spectroscopy for plastic identification,” Polymer Eng. Sci. 40, 2423–2429 (2000).
[CrossRef]

Spectrochim. Acta Part B

C. Lazik, R. K. Marcus, “Electrical and optical characteristics of a radio frequency glow discharge atomic emission source with dielectric sample atomization,” Spectrochim. Acta Part B 48, 1673–1689 (1993).
[CrossRef]

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998).
[CrossRef]

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminium samples,” Spectrochim. Acta Part B 57, 1167–1179 (2002).
[CrossRef]

L. St-Onge, E. Kwong, M. Sabsabi, E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

Tantala

R. Gijbels, “Elemental analysis of high-purity solids by mass spectrometry,” Tantala 37, 363–376 (1990).
[CrossRef]

Other

Ullmann’s Encyclopedia of Industrial Chemistry, (VCH, Weinheim, Germany, 1992), Vol. A 20.

European Commission Research Project, “Development of multipurpose industrial units for recycling of plastic wastes by on-line pattern recognition of polymer features (Sure-Plast),” contract BRPR-CT98-0783, project BE97-4890 (European Commission, 2001).

National Institute of Standards and Technology Atomic Spectra Data Base, http://physics.nist.gov/cgi-bin/AtData/main_asd .

H. Bette, R. Noll, G. Müller, H.-W. Jansen, C. Nazikkol, H. Mittelstädt, “High-speed scanning LIBS at 1000 Hz with single pulse evaluation for the detection of inclusions in steel,” in Proceedings of the 6th International Workshop on Progress in Analytical Chemistry in the Steel and Metals Industries 2002,D. Sommer, ed. (to be published).

M. Kraushaar, R. Noll, H.-U. Schmitz, “Slag analysis with laser-induced breakdown spectrometry,” Appl. Spectrosc. (to be published).

R. Kaiser, W. Gottschalk, Elementare Tests zur Beurteilung von Messdaten (Biographisches Institut, Mannheim, Germany, 1984).

National Standard of Germany, DIN 32 645, Nachweis-, Erfassungs-und Bestimmungsgrenze, (Deutsches Institut für Normung e.V, Berlin, May1994).

A. Cremers, D. J. Romero, “An evaluation of factors affecting the analysis of metals using laser-induced breakdown spectroscopy (LIBS),” in Remote Sensing, R. T. Menzies, ed., Proc. SPIE644, 7–12 (1986).
[CrossRef]

National Standard of Germany, DIN 53804-1, Statistische Auswertung, Teil 1: Kontinuierliche Merkmale (Deutsches Institut Für Normung e.V, Berlin, April2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Laboratory setup for LIBS experiments: M, mirror; L, lens; P, laser-induced plasma; S, sample; W, quartz window; F, optical fiber; ESP, echelle spectrometer; ES, entrance slits; CLM, collimator mirror; PR, prism; EG, echelle grating; CMM, camera mirror; FP, focal plane; PC, personal computer.

Fig. 2
Fig. 2

Temporal evolution of the Pb 405.78-nm emission line for single-pulse plasma excitation with laser pulse energy E L = 250 mJ. Detection with an echelle spectrometer with integration time gate t int = 0.5 µs at time delays of t delay = 1, 3, 20 µs. ABS reference sample, c Pb = 10,000 µg/g.

Fig. 3
Fig. 3

SNR of the background-corrected Pb 405.78-nm emission line as a function of the time delay of the integration window from t delay = 1 µs to t delay = 20 µs for single-pulse plasma excitation with a laser pulse energy of E L = 250 mJ. Detection with an echelle spectrometer with integration time gate t int = 0.5 µs. ABS reference sample, c Pb = 10,000 µg/g.

Fig. 4
Fig. 4

Calculated background-corrected line intensity of Pb 405.78 nm as a function of the end time of integration time gate (t delay + t int) for several time delays t delay.

Fig. 5
Fig. 5

Calculated RSDPb 405.78 nm of the Pb 405.78-nm integrated line intensity as a function of the end of integration time gate (t delay + t int) for several time delays t delay.

Fig. 6
Fig. 6

Calculated RSDPb 405.78 nm of the integrated line intensity of Pb 405.78 nm as a function of delay t delay for a fixed end of integration time gate (t delay + t int) = 80 µs.

Fig. 7
Fig. 7

Temporal evolution of the Pb 405.78-nm emission line for double-pulse plasma excitation with the following parameters: E Burst = 250 mJ, E 1/E 2 = 1, and Δt = 30 µs. Detection with an echelle spectrometer with integration time gate t int = 0.5 µs and time delays t delay = 1, 3, 20 µs.

Fig. 8
Fig. 8

SNR of Pb 405.78 nm for double-pulse plasma excitation as a function of time delay t delay. Laser burst parameters are as for Fig. 7. Detection with an echelle spectrometer with integration time gate t int = 0.5 µs and time delays t delay = 1–20 µs.

Fig. 9
Fig. 9

Calibration curve for Cd 228.80 nm referenced to 0th order by single-pulse plasma excitation with optimized time delay and time integration gate; see Table 2. Laser pulse energy, E L = 350 mJ.

Fig. 10
Fig. 10

Calibration curve for Br 827.24 nm referenced to 0th order by single-pulse plasma excitation with optimized time delay and time integration gate; see Table 2. Laser pulse energy, E L = 350 mJ.

Fig. 11
Fig. 11

Calibration curve for Cd 228.80 nm referenced to 0th order by double-pulse plasma excitation with optimized time delay and time integration gate; see Table 2. Laser burst parameters, E Burst = 350 mJ, E 1/E 2 = 1.2, and Δt = 18 µs.

Fig. 12
Fig. 12

Calibration curve for Br 827.24 nm referenced to 0th order by double-pulse plasma excitation with optimized time delay and time integration gate; see Table 2. Laser burst parameters, E Burst = 350 mJ, E 1/E 2 = 1.2, and Δt = 18 µs. At the time of the calibration, Br reference samples c Br = 170 mg/g and c Br = 240 mg/g were not yet available.

Fig. 13
Fig. 13

Schematic of the on-line LIBS analyzer: PC, personal computer; PR, Paschen-Runge polychromator; G, grating; PM’s, photomultipliers; PM-ZO, photomultiplier 0th order; MCI, multichannel integration electronics; F, optical fiber; P, plasma; S, sample; MR, measuring range; DM, dichroic mirror; M’s, mirrors; AF’s, autofocusing units; TS, triangulation sensor; C, controller; FO, focusing optics.

Fig. 14
Fig. 14

Intensity of Pb 405.78 nm, 0th-order, and ratio 〈Pb I 405.78 nm/0th order〉 as a function of sample distance for a fixed fiber position obtained with the autofocusing unit. Plasma excitation with a double-pulse laser in air of an ABS polymer sample containing 2000 µg/g lead. The error bars given by the standard deviation (SD) are shown enlarged by a factor of 3.

Fig. 15
Fig. 15

Comparison of Pb 405.78-nm LIBS signal internally standardized to 0th-order for static and dynamic focusing.

Fig. 16
Fig. 16

Schematic setup of the sensor head (right) at the conveyor belt (cross section shown at the left): R, roller of the conveyor system; S, sample; W, window; M’s, mirrors; WD, wedge to compensate for beam offset; LB, laser beam for LIBS; AF, autofocusing unit; TS, triangulation sensor.

Tables (4)

Tables Icon

Table 1 Relative Change of SNR or Analytical Resolving Power A with Increasing Laser Pulse Energya

Tables Icon

Table 2 Detection Limits According to the 3s Criterion for Single- and Double-Pulse Plasma Excitation and the Respective Parameters (t delay, t int) under Laboratory Conditions

Tables Icon

Table 3 LODs of the LIBS Analyzer for Elements in Moving ABS Samplesa

Tables Icon

Table 4 Results from the On-Line LIBS Analyzer at the Pilot Sorting Plant with Real Waste EOL-WEEE Monitor Housings Moving at a Velocity of 0.5 m/s

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A=I¯high-I¯lows2Ihigh+s2Ilow1/2=I¯analytesI¯analyte,
Ianalyteacctdelay, tint=td=tdelaytdelay+tint-δtint Ianalytetd, δtint,
sanalyteacctdelay, tint=td=tdelaytdelay+tint-δtint s2Ianalytetd, δtint1/2.
Atdelay, tint=Ianalyteacctdelay, tintsanalyteacctdelay, tint=1RSDanalyteacc.
Îanalyteacc=Ianalyteacctdelaya, tintaIreferenceacctdelayr, tintr,
RŜDanalyteacc 2=ŝanalyteaccÎanalyteacc2=sanalyteacc2Ianalyteacc2+sreferenceacc2Ireferenceacc2-2 s2Ianalyteacc, IreferenceaccIanalyteaccIreferenceacc.

Metrics