Abstract

Spectra from plasma produced by laser-induced breakdown of graphite were recorded and analyzed to increase our understanding of the way in which carbon nanoparticles are created during Nd:YAG laser ablation of graphite. The effects of various buffer gases were studied. Electron density and temperature were determined from spectra of the first and second ions of atomic carbon. The C2 Swan spectrum was also prominent in most of the measured spectra. Temperature was inferred from each experimental Swan spectrum by determination of the temperature for which a synthetic Swan spectrum best fitted, in the least-squares sense, the measured spectrum.

© 2003 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription