Abstract

A laser microscope system for the microanalytical characterization of complex materials is described. The universal measuring principle of laser-induced breakdown spectroscopy (LIBS) in combination with echelle optics permits a fast simultaneous multielement analysis with a possible spatial resolution below 10 pm. The developed system features completely UV-transparent optics for the laser-microscope coupling and the emission beam path and enables parallel signal detection within the wavelength range of 200–800 nm with a spectral resolution of a few picometers. Investigations of glass defects and tool steels were performed. The characterization of a glass defect in a tumbler by a micro-LIBS line scan, with use of a 266-nm diode-pumped Nd:YAG laser for excitation, is possible by simple comparison of plasma spectra of the defect and the surrounding area. Variations in the main elemental composition as well as impurities by trace elements are detected at the same time. Through measurement of the calibration samples with the known concentration of the corresponding element, a correlation between the intensity of spectral lines and the element concentration was also achieved. The change of elemental composition at the transient stellite solder of tool steels has been determined by an area scan. The two-dimensional pictures show abrupt changes of the element distribution along the solder edge and allow fundamental researches of dynamic modifications (e.g., diffusion) in steel.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Laqua, “Analytical spectroscopy using laser atomizers,” in Chemical Analysis, J. D. Winefordner, ed. (Wiley, New York, 1997), pp. 47–118.
  2. L. Moenke-Blankenburg, “Laser microanalysis,” in Chemical Analysis, J. D. Winefordner, ed. (Wiley, New York, 1989).
    [CrossRef]
  3. D. W. Hahn, W. L. Flower, K. R. Henecken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836–1844 (1997).
    [CrossRef]
  4. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
    [CrossRef]
  5. C. Geertsen, J.-L. Lacour, P. Mauchien, L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminium samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
    [CrossRef]
  6. I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
    [CrossRef]
  7. K. Bange, H. Müller, C. Strubel, “Characterization of defects in glasses and coatings on glasses by microanalytical techniques,” Mikrochim. Acta 132, 493–503 (2000).
    [CrossRef]
  8. S. Florek, H. Becker-Ross, T. Florek, “Adaptation of an echelle spectrograph to a large CCD detector,” Fresenius. J. Anal. Chem. 355, 269–271 (1996).
  9. H. Becker-Ross, M. Okruss, S. Florek, U. Heitmann, M. D. Huang, “Echelle-spectrograph as a tool for studies of structured background in flame atomic absorption spectrometry,” Spectrochim. Acta Part B 57, 1493–1504 (2002).
    [CrossRef]
  10. I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 671–683 (2001).
    [CrossRef]
  11. U. Panne, C. Haisch, M. Clara, R. Niessner, “Analysis of glass and glass melts during the vitrification process of fly and bottom ashes by laser-induced plasma spectroscopy. Part I: Normalization and plasma diagnostics,” Spectrochim. Acta Part B 53, 1957–1968 (1998).
    [CrossRef]
  12. V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial Echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
    [CrossRef]
  13. A. Uhl, K. Loebe, L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 795–806 (2001).
    [CrossRef]
  14. P. Fichet, P. Mauchien, J.-F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Analytica Chim. Acta 429, 269–278 (2001).
    [CrossRef]
  15. U. Panne, R. E. Neuhauser, C. Haisch, H. Fink, R. Niessner, “Remote analysis of a mineral melt by laser-induced plasma spectroscopy,” Applied Spectrosc. 56, 375–380 (2002).
    [CrossRef]

2002

H. Becker-Ross, M. Okruss, S. Florek, U. Heitmann, M. D. Huang, “Echelle-spectrograph as a tool for studies of structured background in flame atomic absorption spectrometry,” Spectrochim. Acta Part B 57, 1493–1504 (2002).
[CrossRef]

U. Panne, R. E. Neuhauser, C. Haisch, H. Fink, R. Niessner, “Remote analysis of a mineral melt by laser-induced plasma spectroscopy,” Applied Spectrosc. 56, 375–380 (2002).
[CrossRef]

2001

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 671–683 (2001).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial Echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

A. Uhl, K. Loebe, L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 795–806 (2001).
[CrossRef]

P. Fichet, P. Mauchien, J.-F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Analytica Chim. Acta 429, 269–278 (2001).
[CrossRef]

2000

K. Bange, H. Müller, C. Strubel, “Characterization of defects in glasses and coatings on glasses by microanalytical techniques,” Mikrochim. Acta 132, 493–503 (2000).
[CrossRef]

1999

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[CrossRef]

A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

1998

U. Panne, C. Haisch, M. Clara, R. Niessner, “Analysis of glass and glass melts during the vitrification process of fly and bottom ashes by laser-induced plasma spectroscopy. Part I: Normalization and plasma diagnostics,” Spectrochim. Acta Part B 53, 1957–1968 (1998).
[CrossRef]

1997

1996

C. Geertsen, J.-L. Lacour, P. Mauchien, L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminium samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

S. Florek, H. Becker-Ross, T. Florek, “Adaptation of an echelle spectrograph to a large CCD detector,” Fresenius. J. Anal. Chem. 355, 269–271 (1996).

Bange, K.

K. Bange, H. Müller, C. Strubel, “Characterization of defects in glasses and coatings on glasses by microanalytical techniques,” Mikrochim. Acta 132, 493–503 (2000).
[CrossRef]

Bassiotis, I.

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 671–683 (2001).
[CrossRef]

Becker-Ross, H.

H. Becker-Ross, M. Okruss, S. Florek, U. Heitmann, M. D. Huang, “Echelle-spectrograph as a tool for studies of structured background in flame atomic absorption spectrometry,” Spectrochim. Acta Part B 57, 1493–1504 (2002).
[CrossRef]

S. Florek, H. Becker-Ross, T. Florek, “Adaptation of an echelle spectrograph to a large CCD detector,” Fresenius. J. Anal. Chem. 355, 269–271 (1996).

Ciucci, A.

Clara, M.

U. Panne, C. Haisch, M. Clara, R. Niessner, “Analysis of glass and glass melts during the vitrification process of fly and bottom ashes by laser-induced plasma spectroscopy. Part I: Normalization and plasma diagnostics,” Spectrochim. Acta Part B 53, 1957–1968 (1998).
[CrossRef]

Corsi, M.

Detalle, V.

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial Echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Diamantopoulou, A.

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 671–683 (2001).
[CrossRef]

Fichet, P.

P. Fichet, P. Mauchien, J.-F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Analytica Chim. Acta 429, 269–278 (2001).
[CrossRef]

Fink, H.

U. Panne, R. E. Neuhauser, C. Haisch, H. Fink, R. Niessner, “Remote analysis of a mineral melt by laser-induced plasma spectroscopy,” Applied Spectrosc. 56, 375–380 (2002).
[CrossRef]

Florek, S.

H. Becker-Ross, M. Okruss, S. Florek, U. Heitmann, M. D. Huang, “Echelle-spectrograph as a tool for studies of structured background in flame atomic absorption spectrometry,” Spectrochim. Acta Part B 57, 1493–1504 (2002).
[CrossRef]

S. Florek, H. Becker-Ross, T. Florek, “Adaptation of an echelle spectrograph to a large CCD detector,” Fresenius. J. Anal. Chem. 355, 269–271 (1996).

Florek, T.

S. Florek, H. Becker-Ross, T. Florek, “Adaptation of an echelle spectrograph to a large CCD detector,” Fresenius. J. Anal. Chem. 355, 269–271 (1996).

Flower, W. L.

Geertsen, C.

C. Geertsen, J.-L. Lacour, P. Mauchien, L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminium samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

Giannoudakos, A.

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 671–683 (2001).
[CrossRef]

Gornushkin, I. B.

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[CrossRef]

Hahn, D. W.

Haisch, C.

U. Panne, R. E. Neuhauser, C. Haisch, H. Fink, R. Niessner, “Remote analysis of a mineral melt by laser-induced plasma spectroscopy,” Applied Spectrosc. 56, 375–380 (2002).
[CrossRef]

U. Panne, C. Haisch, M. Clara, R. Niessner, “Analysis of glass and glass melts during the vitrification process of fly and bottom ashes by laser-induced plasma spectroscopy. Part I: Normalization and plasma diagnostics,” Spectrochim. Acta Part B 53, 1957–1968 (1998).
[CrossRef]

Heitmann, U.

H. Becker-Ross, M. Okruss, S. Florek, U. Heitmann, M. D. Huang, “Echelle-spectrograph as a tool for studies of structured background in flame atomic absorption spectrometry,” Spectrochim. Acta Part B 57, 1493–1504 (2002).
[CrossRef]

Henecken, K. R.

Héon, R.

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial Echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Huang, M. D.

H. Becker-Ross, M. Okruss, S. Florek, U. Heitmann, M. D. Huang, “Echelle-spectrograph as a tool for studies of structured background in flame atomic absorption spectrometry,” Spectrochim. Acta Part B 57, 1493–1504 (2002).
[CrossRef]

Kompitsas, M.

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 671–683 (2001).
[CrossRef]

Kreuchwig, L.

A. Uhl, K. Loebe, L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 795–806 (2001).
[CrossRef]

Lacour, J.-L.

C. Geertsen, J.-L. Lacour, P. Mauchien, L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminium samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

Laqua, K.

K. Laqua, “Analytical spectroscopy using laser atomizers,” in Chemical Analysis, J. D. Winefordner, ed. (Wiley, New York, 1997), pp. 47–118.

Loebe, K.

A. Uhl, K. Loebe, L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 795–806 (2001).
[CrossRef]

Mauchien, P.

P. Fichet, P. Mauchien, J.-F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Analytica Chim. Acta 429, 269–278 (2001).
[CrossRef]

C. Geertsen, J.-L. Lacour, P. Mauchien, L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminium samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

Moenke-Blankenburg, L.

L. Moenke-Blankenburg, “Laser microanalysis,” in Chemical Analysis, J. D. Winefordner, ed. (Wiley, New York, 1989).
[CrossRef]

Moulin, C.

P. Fichet, P. Mauchien, J.-F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Analytica Chim. Acta 429, 269–278 (2001).
[CrossRef]

Müller, H.

K. Bange, H. Müller, C. Strubel, “Characterization of defects in glasses and coatings on glasses by microanalytical techniques,” Mikrochim. Acta 132, 493–503 (2000).
[CrossRef]

Nasajpour, H.

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[CrossRef]

Neuhauser, R. E.

U. Panne, R. E. Neuhauser, C. Haisch, H. Fink, R. Niessner, “Remote analysis of a mineral melt by laser-induced plasma spectroscopy,” Applied Spectrosc. 56, 375–380 (2002).
[CrossRef]

Niessner, R.

U. Panne, R. E. Neuhauser, C. Haisch, H. Fink, R. Niessner, “Remote analysis of a mineral melt by laser-induced plasma spectroscopy,” Applied Spectrosc. 56, 375–380 (2002).
[CrossRef]

U. Panne, C. Haisch, M. Clara, R. Niessner, “Analysis of glass and glass melts during the vitrification process of fly and bottom ashes by laser-induced plasma spectroscopy. Part I: Normalization and plasma diagnostics,” Spectrochim. Acta Part B 53, 1957–1968 (1998).
[CrossRef]

Okruss, M.

H. Becker-Ross, M. Okruss, S. Florek, U. Heitmann, M. D. Huang, “Echelle-spectrograph as a tool for studies of structured background in flame atomic absorption spectrometry,” Spectrochim. Acta Part B 57, 1493–1504 (2002).
[CrossRef]

Palleschi, V.

Panne, U.

U. Panne, R. E. Neuhauser, C. Haisch, H. Fink, R. Niessner, “Remote analysis of a mineral melt by laser-induced plasma spectroscopy,” Applied Spectrosc. 56, 375–380 (2002).
[CrossRef]

U. Panne, C. Haisch, M. Clara, R. Niessner, “Analysis of glass and glass melts during the vitrification process of fly and bottom ashes by laser-induced plasma spectroscopy. Part I: Normalization and plasma diagnostics,” Spectrochim. Acta Part B 53, 1957–1968 (1998).
[CrossRef]

Pierrard, L.

C. Geertsen, J.-L. Lacour, P. Mauchien, L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminium samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

Rastelli, S.

Roubani-Kalantzopoulou, F.

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 671–683 (2001).
[CrossRef]

Sabsabi, M.

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial Echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Salvetti, A.

Smith, B. W.

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[CrossRef]

St-Onge, L.

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial Echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Strubel, C.

K. Bange, H. Müller, C. Strubel, “Characterization of defects in glasses and coatings on glasses by microanalytical techniques,” Mikrochim. Acta 132, 493–503 (2000).
[CrossRef]

Tognoni, E.

Uhl, A.

A. Uhl, K. Loebe, L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 795–806 (2001).
[CrossRef]

Wagner, J.-F.

P. Fichet, P. Mauchien, J.-F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Analytica Chim. Acta 429, 269–278 (2001).
[CrossRef]

Winefordner, J. D.

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[CrossRef]

Anal. Chem.

I. B. Gornushkin, B. W. Smith, H. Nasajpour, J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[CrossRef]

Analytica Chim. Acta

P. Fichet, P. Mauchien, J.-F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Analytica Chim. Acta 429, 269–278 (2001).
[CrossRef]

Appl. Spectrosc.

Applied Spectrosc.

U. Panne, R. E. Neuhauser, C. Haisch, H. Fink, R. Niessner, “Remote analysis of a mineral melt by laser-induced plasma spectroscopy,” Applied Spectrosc. 56, 375–380 (2002).
[CrossRef]

Fresenius. J. Anal. Chem.

S. Florek, H. Becker-Ross, T. Florek, “Adaptation of an echelle spectrograph to a large CCD detector,” Fresenius. J. Anal. Chem. 355, 269–271 (1996).

Mikrochim. Acta

K. Bange, H. Müller, C. Strubel, “Characterization of defects in glasses and coatings on glasses by microanalytical techniques,” Mikrochim. Acta 132, 493–503 (2000).
[CrossRef]

Spectrochim. Acta Part B

C. Geertsen, J.-L. Lacour, P. Mauchien, L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminium samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996).
[CrossRef]

H. Becker-Ross, M. Okruss, S. Florek, U. Heitmann, M. D. Huang, “Echelle-spectrograph as a tool for studies of structured background in flame atomic absorption spectrometry,” Spectrochim. Acta Part B 57, 1493–1504 (2002).
[CrossRef]

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. Roubani-Kalantzopoulou, M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 671–683 (2001).
[CrossRef]

U. Panne, C. Haisch, M. Clara, R. Niessner, “Analysis of glass and glass melts during the vitrification process of fly and bottom ashes by laser-induced plasma spectroscopy. Part I: Normalization and plasma diagnostics,” Spectrochim. Acta Part B 53, 1957–1968 (1998).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial Echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

A. Uhl, K. Loebe, L. Kreuchwig, “Fast analysis of wood preservers using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 795–806 (2001).
[CrossRef]

Other

K. Laqua, “Analytical spectroscopy using laser atomizers,” in Chemical Analysis, J. D. Winefordner, ed. (Wiley, New York, 1997), pp. 47–118.

L. Moenke-Blankenburg, “Laser microanalysis,” in Chemical Analysis, J. D. Winefordner, ed. (Wiley, New York, 1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the microscopic laser-induced plasma analyzer. FHG, fourth-harmonic generation; PC, personal computer.

Fig. 2
Fig. 2

Optical scheme of the echelle spectrograph in tetrahedral mounting.

Fig. 3
Fig. 3

Microscope pictures of laser generated holes, with five single shots per analysis with a flash-lamp pumped Nd:YAG laser. 1064-nm excitation: (a) metal, (b) glass; 266-nm excitation: (c) metal, (d) glass.

Fig. 4
Fig. 4

Microscope pictures of laser generated holes, with 10 single shots per analysis with a diode-pumped Nd:YAG laser. 266-nm excitation of a metal sample: (a) crater surface diameter, 18 µm; (b) crater center inner diameter, 12 µm; (c) single-shot crater diameter, 8 µm.

Fig. 5
Fig. 5

Spectral line details of the multielement-analysis of tool steel. (a) basic material, (b) solder, (c) carbid metal.

Fig. 6
Fig. 6

Microscope pictures of a tool steel. Area of transition basic material, (solder) carbid metal, (a) before and (b) after LIBS analysis (line scan, 90-µm step width, 1064-nm excitation).

Fig. 7
Fig. 7

Modification of the element composition (line scan) along the basic material (solder) carbid metal transition in tool steel.

Fig. 8
Fig. 8

Elemental distribution along the solder edge of a tool steel (area scan).

Fig. 9
Fig. 9

Microscope pictures of glass defects in a tumbler. (a) bubble, (b) inclusion (knot).

Fig. 10
Fig. 10

Modification of the element composition (line scan) across the knot cross section.

Fig. 11
Fig. 11

Calibration curve for quantitative glass analysis.

Metrics