Abstract

The application of laser-induced breakdown spectroscopy to the analysis of single biological microparticles (bioaerosols) is described, exemplified here for a range of pollens. Spectra were recorded by exposure of the pollen to a single laser pulse from a Nd:YAG laser (λ = 1064 nm, E p ∼ 30 mJ). The intensities of the single-pulse laser-induced breakdown spectra fluctuated dramatically, but an internal signal calibration procedure was applied that referenced elemental line intensities to the carbon matrix of the sample (represented by molecular bands of CN and C2). This procedure allowed us to determine relative element concentration distributions for the different types of pollen. These pollens exhibited some distinct concentration variations, for both major and minor (trace) elements in the biomatrix, through which ultimately individual pollens might be identified and classified. The same pollen samples were also analyzed by Raman microscopy, which provided molecular compositional data (even with spatial resolution). These data allowed us to distinguish between biological and nonbiological specimens and to obtain additional classification information for the various pollen families, complementing the laser-induced breakdown spectroscopy measurement data.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Jacobson, S. C. Morris, “The primary air pollutants—viable particles, their occurrence, sources and effects,” in Air Pollution, 3rd ed., A. C. Stern, ed. (Academic, New York, 1976).
  2. K. J. Whitby, “The physical characteristics of sulphur aerosols,” Atmos. Environ. 12, 135–159 (1978).
    [CrossRef]
  3. R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyser for rapid measurement of single micrometer-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
    [CrossRef]
  4. M. L. Laucks, G. Roll, G. Schweiger, E. J. Davis, “Physical and chemical (Raman) characterisation of bio-aerosols—pollen,” J. Aerosol Sci. 31, 307–319 (2000).
    [CrossRef]
  5. S. Mathias-Maser, “Primary biological aerosol particles: their significance, sources, sampling methods and size distribution in the atmosphere,” in Atmospheric Particles, R. M. Harrison, R. Van Grieken, eds. (Wiley, Chichester, UK, 1998).
  6. D. T. Suess, K. A. Prather, “Mass spectrometry of aerosols,” Chem. Rev. 99, 3007–3035 (1999).
    [CrossRef]
  7. J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 851–864 (2001).
    [CrossRef]
  8. S. Sowa, K. F. Connor, “Biochemical changes during pollen germination measured in vivo by infrared spectroscopy,” Plant Sci. 105, 23–30 (1995).
    [CrossRef]
  9. W. C. Hinds, Aerosol Technology: Properties, Behaviour, and Measurement of Airborne Particles, 2nd ed. (Wiley, New York, 1999).
  10. E. Gard, J. E. Mayor, B. D. Morrical, T. Dienes, D. P. Fergenson, K. A. Prather, “Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS,” Anal. Chem. 69, 4083–4091 (1997).
    [CrossRef]
  11. W. G. Murrey, “The elemental analysis of pollen using the technique of laser-induced breakdown spectroscopy,” internal project report (Department of Physics, University of Wales, Swansea, UK, 2002).
  12. A. W. Miziolek, A. C. Samuels, U.S. Army Research Laboratory, Aberdeen Proving Ground, Md. 21005 (personal communication, 2002).
  13. S. Morel, P. Adam, J. Amouroux, Centre d’Etudes du Bouchet, Service DPHY, 91710 Vert-Le-Petit, France (personal communication, 2002).
  14. S. Morel, N. Leone, P. Adam, J. Amouroux, “Detection of bacteria by time-resolved laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6184–6191 (2003).
    [CrossRef] [PubMed]
  15. A. C. Samuels, F. C. DeLucia, K. L. McNesby, A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS) of bacterial spores, molds, pollens, and proteins: initial studies of discrimination potential,” Appl. Opt. 42, 6205–6209 (2003).
    [CrossRef] [PubMed]
  16. D. C. S. Beddows, O. Samek, M. Liška, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 57, 1461–1471 (2002).
    [CrossRef]
  17. D. C. S. Beddows, “Addendum to ‘Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,’” Spectrochim. Acta B 58, 583–584 (2003).
    [CrossRef]
  18. S. Bean, “Detection of heavy metal trace elements in tree samples,” internal project report (Department of Physics, University of Wales, Swansea, UK2002).
  19. L. St-Onge, R. Sing, S. Béchard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A Suppl. 69, S913–S916 (1999).
  20. C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1271 (1998).
    [CrossRef]
  21. O. Samek, M. Liska, J. Kaiser, V. Krzyzanek, D. C. S. Beddows, A. Belenkevitch, G. W. Morris, H. H. Telle, “Laser ablation for mineral analysis in the human body: integration of LIFS with LIBS,” in Biomedical Sensors, Fibers and Optical Delivery Systems, F. Baldini, N. I. Croitoru, M. Frenz, I. Lundstrom, M. Miyagi, R. Pratesi, O. S. Wolfbeis, eds., Proc. SPIE3570, 263–271 (1998).
    [CrossRef]
  22. P. J. Knowles, P. J. Hoy, D. C. Cartwright, “The A2∏-X2∑+ and B2∑+-X2∑+ violet systems of the CN radical: accurate multi-reference configuration interaction calculations of the radiative transition probabilities,” J. Chem. Phys. 89, 7334–7343 (1989).
    [CrossRef]
  23. B. Schrader, H. H. Klump, K. Schenzel, H. Schulz, “Non-destructive NIR FT Raman analysis of plants,” J. Mol. Struct. 509, 201–212 (1999).
    [CrossRef]
  24. B. Schrader, B. Dippel, I. Erb, S. Keller, T. Lochte, H. Schulz, E. Tatsch, S. Wessel, “NIR Raman spectroscopy in medicine and biology: results and aspects,” J. Mol. Struct. 480–481, 21–32 (1999).
    [CrossRef]
  25. D. Menut, P. le Coustumer, J. L. Lacour, P. Fichet, A. Rivoallan, “Analysis of alluvial soils for environmental survey by micro LIBS,” in Laser-Induced Breakdown Spectroscopy and Applications (Optical Society of America, Washington, D.C., 2002), paper ThE2.
  26. H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B 56, 947–960 (2001).
    [CrossRef]
  27. Y. Pan, S. C. Hill, R. G. Pinnick, S. Holler, R. K. Chang, G. Bottiger, “Fluorescence spectra of individual flowing airborne biological particles measured in real time,” presented at the 1999 Optical Society of America Annual Meeting, Santa Clara, Calif., 26–30 September 1999.
  28. S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
    [CrossRef]

2003 (3)

2002 (1)

D. C. S. Beddows, O. Samek, M. Liška, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 57, 1461–1471 (2002).
[CrossRef]

2001 (2)

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 851–864 (2001).
[CrossRef]

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B 56, 947–960 (2001).
[CrossRef]

2000 (1)

M. L. Laucks, G. Roll, G. Schweiger, E. J. Davis, “Physical and chemical (Raman) characterisation of bio-aerosols—pollen,” J. Aerosol Sci. 31, 307–319 (2000).
[CrossRef]

1999 (5)

D. T. Suess, K. A. Prather, “Mass spectrometry of aerosols,” Chem. Rev. 99, 3007–3035 (1999).
[CrossRef]

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

B. Schrader, H. H. Klump, K. Schenzel, H. Schulz, “Non-destructive NIR FT Raman analysis of plants,” J. Mol. Struct. 509, 201–212 (1999).
[CrossRef]

B. Schrader, B. Dippel, I. Erb, S. Keller, T. Lochte, H. Schulz, E. Tatsch, S. Wessel, “NIR Raman spectroscopy in medicine and biology: results and aspects,” J. Mol. Struct. 480–481, 21–32 (1999).
[CrossRef]

L. St-Onge, R. Sing, S. Béchard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A Suppl. 69, S913–S916 (1999).

1998 (2)

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1271 (1998).
[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyser for rapid measurement of single micrometer-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
[CrossRef]

1997 (1)

E. Gard, J. E. Mayor, B. D. Morrical, T. Dienes, D. P. Fergenson, K. A. Prather, “Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS,” Anal. Chem. 69, 4083–4091 (1997).
[CrossRef]

1995 (1)

S. Sowa, K. F. Connor, “Biochemical changes during pollen germination measured in vivo by infrared spectroscopy,” Plant Sci. 105, 23–30 (1995).
[CrossRef]

1989 (1)

P. J. Knowles, P. J. Hoy, D. C. Cartwright, “The A2∏-X2∑+ and B2∑+-X2∑+ violet systems of the CN radical: accurate multi-reference configuration interaction calculations of the radiative transition probabilities,” J. Chem. Phys. 89, 7334–7343 (1989).
[CrossRef]

1978 (1)

K. J. Whitby, “The physical characteristics of sulphur aerosols,” Atmos. Environ. 12, 135–159 (1978).
[CrossRef]

Adam, P.

S. Morel, N. Leone, P. Adam, J. Amouroux, “Detection of bacteria by time-resolved laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6184–6191 (2003).
[CrossRef] [PubMed]

S. Morel, P. Adam, J. Amouroux, Centre d’Etudes du Bouchet, Service DPHY, 91710 Vert-Le-Petit, France (personal communication, 2002).

Amouroux, J.

S. Morel, N. Leone, P. Adam, J. Amouroux, “Detection of bacteria by time-resolved laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6184–6191 (2003).
[CrossRef] [PubMed]

S. Morel, P. Adam, J. Amouroux, Centre d’Etudes du Bouchet, Service DPHY, 91710 Vert-Le-Petit, France (personal communication, 2002).

Bean, S.

S. Bean, “Detection of heavy metal trace elements in tree samples,” internal project report (Department of Physics, University of Wales, Swansea, UK2002).

Béchard, S.

L. St-Onge, R. Sing, S. Béchard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A Suppl. 69, S913–S916 (1999).

Beddows, D. C. S.

D. C. S. Beddows, “Addendum to ‘Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,’” Spectrochim. Acta B 58, 583–584 (2003).
[CrossRef]

D. C. S. Beddows, O. Samek, M. Liška, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 57, 1461–1471 (2002).
[CrossRef]

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B 56, 947–960 (2001).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, V. Krzyzanek, D. C. S. Beddows, A. Belenkevitch, G. W. Morris, H. H. Telle, “Laser ablation for mineral analysis in the human body: integration of LIFS with LIBS,” in Biomedical Sensors, Fibers and Optical Delivery Systems, F. Baldini, N. I. Croitoru, M. Frenz, I. Lundstrom, M. Miyagi, R. Pratesi, O. S. Wolfbeis, eds., Proc. SPIE3570, 263–271 (1998).
[CrossRef]

Belenkevitch, A.

O. Samek, M. Liska, J. Kaiser, V. Krzyzanek, D. C. S. Beddows, A. Belenkevitch, G. W. Morris, H. H. Telle, “Laser ablation for mineral analysis in the human body: integration of LIFS with LIBS,” in Biomedical Sensors, Fibers and Optical Delivery Systems, F. Baldini, N. I. Croitoru, M. Frenz, I. Lundstrom, M. Miyagi, R. Pratesi, O. S. Wolfbeis, eds., Proc. SPIE3570, 263–271 (1998).
[CrossRef]

Bottiger, G.

Y. Pan, S. C. Hill, R. G. Pinnick, S. Holler, R. K. Chang, G. Bottiger, “Fluorescence spectra of individual flowing airborne biological particles measured in real time,” presented at the 1999 Optical Society of America Annual Meeting, Santa Clara, Calif., 26–30 September 1999.

Bottiger, J.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Boulmer-Leborgne, C.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1271 (1998).
[CrossRef]

Carranza, J. E.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 851–864 (2001).
[CrossRef]

Cartwright, D. C.

P. J. Knowles, P. J. Hoy, D. C. Cartwright, “The A2∏-X2∑+ and B2∑+-X2∑+ violet systems of the CN radical: accurate multi-reference configuration interaction calculations of the radiative transition probabilities,” J. Chem. Phys. 89, 7334–7343 (1989).
[CrossRef]

Chang, R. K.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyser for rapid measurement of single micrometer-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
[CrossRef]

Y. Pan, S. C. Hill, R. G. Pinnick, S. Holler, R. K. Chang, G. Bottiger, “Fluorescence spectra of individual flowing airborne biological particles measured in real time,” presented at the 1999 Optical Society of America Annual Meeting, Santa Clara, Calif., 26–30 September 1999.

Chen, B. T.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Chen, G.

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyser for rapid measurement of single micrometer-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
[CrossRef]

Connor, K. F.

S. Sowa, K. F. Connor, “Biochemical changes during pollen germination measured in vivo by infrared spectroscopy,” Plant Sci. 105, 23–30 (1995).
[CrossRef]

Davis, E. J.

M. L. Laucks, G. Roll, G. Schweiger, E. J. Davis, “Physical and chemical (Raman) characterisation of bio-aerosols—pollen,” J. Aerosol Sci. 31, 307–319 (2000).
[CrossRef]

DeLucia, F. C.

Dienes, T.

E. Gard, J. E. Mayor, B. D. Morrical, T. Dienes, D. P. Fergenson, K. A. Prather, “Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS,” Anal. Chem. 69, 4083–4091 (1997).
[CrossRef]

Dippel, B.

B. Schrader, B. Dippel, I. Erb, S. Keller, T. Lochte, H. Schulz, E. Tatsch, S. Wessel, “NIR Raman spectroscopy in medicine and biology: results and aspects,” J. Mol. Struct. 480–481, 21–32 (1999).
[CrossRef]

Erb, I.

B. Schrader, B. Dippel, I. Erb, S. Keller, T. Lochte, H. Schulz, E. Tatsch, S. Wessel, “NIR Raman spectroscopy in medicine and biology: results and aspects,” J. Mol. Struct. 480–481, 21–32 (1999).
[CrossRef]

Feather, G.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Fergenson, D. P.

E. Gard, J. E. Mayor, B. D. Morrical, T. Dienes, D. P. Fergenson, K. A. Prather, “Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS,” Anal. Chem. 69, 4083–4091 (1997).
[CrossRef]

Fichet, P.

D. Menut, P. le Coustumer, J. L. Lacour, P. Fichet, A. Rivoallan, “Analysis of alluvial soils for environmental survey by micro LIBS,” in Laser-Induced Breakdown Spectroscopy and Applications (Optical Society of America, Washington, D.C., 2002), paper ThE2.

Fisher, B. T.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 851–864 (2001).
[CrossRef]

Gard, E.

E. Gard, J. E. Mayor, B. D. Morrical, T. Dienes, D. P. Fergenson, K. A. Prather, “Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS,” Anal. Chem. 69, 4083–4091 (1997).
[CrossRef]

Hahn, D. W.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 851–864 (2001).
[CrossRef]

Hermann, J.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1271 (1998).
[CrossRef]

Hill, S. C.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyser for rapid measurement of single micrometer-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
[CrossRef]

Y. Pan, S. C. Hill, R. G. Pinnick, S. Holler, R. K. Chang, G. Bottiger, “Fluorescence spectra of individual flowing airborne biological particles measured in real time,” presented at the 1999 Optical Society of America Annual Meeting, Santa Clara, Calif., 26–30 September 1999.

Hinds, W. C.

W. C. Hinds, Aerosol Technology: Properties, Behaviour, and Measurement of Airborne Particles, 2nd ed. (Wiley, New York, 1999).

Holler, S.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Y. Pan, S. C. Hill, R. G. Pinnick, S. Holler, R. K. Chang, G. Bottiger, “Fluorescence spectra of individual flowing airborne biological particles measured in real time,” presented at the 1999 Optical Society of America Annual Meeting, Santa Clara, Calif., 26–30 September 1999.

Hoy, P. J.

P. J. Knowles, P. J. Hoy, D. C. Cartwright, “The A2∏-X2∑+ and B2∑+-X2∑+ violet systems of the CN radical: accurate multi-reference configuration interaction calculations of the radiative transition probabilities,” J. Chem. Phys. 89, 7334–7343 (1989).
[CrossRef]

Jacobson, A. R.

A. R. Jacobson, S. C. Morris, “The primary air pollutants—viable particles, their occurrence, sources and effects,” in Air Pollution, 3rd ed., A. C. Stern, ed. (Academic, New York, 1976).

Kaiser, J.

O. Samek, M. Liska, J. Kaiser, V. Krzyzanek, D. C. S. Beddows, A. Belenkevitch, G. W. Morris, H. H. Telle, “Laser ablation for mineral analysis in the human body: integration of LIFS with LIBS,” in Biomedical Sensors, Fibers and Optical Delivery Systems, F. Baldini, N. I. Croitoru, M. Frenz, I. Lundstrom, M. Miyagi, R. Pratesi, O. S. Wolfbeis, eds., Proc. SPIE3570, 263–271 (1998).
[CrossRef]

Keller, S.

B. Schrader, B. Dippel, I. Erb, S. Keller, T. Lochte, H. Schulz, E. Tatsch, S. Wessel, “NIR Raman spectroscopy in medicine and biology: results and aspects,” J. Mol. Struct. 480–481, 21–32 (1999).
[CrossRef]

Klump, H. H.

B. Schrader, H. H. Klump, K. Schenzel, H. Schulz, “Non-destructive NIR FT Raman analysis of plants,” J. Mol. Struct. 509, 201–212 (1999).
[CrossRef]

Knowles, P. J.

P. J. Knowles, P. J. Hoy, D. C. Cartwright, “The A2∏-X2∑+ and B2∑+-X2∑+ violet systems of the CN radical: accurate multi-reference configuration interaction calculations of the radiative transition probabilities,” J. Chem. Phys. 89, 7334–7343 (1989).
[CrossRef]

Krzyzanek, V.

O. Samek, M. Liska, J. Kaiser, V. Krzyzanek, D. C. S. Beddows, A. Belenkevitch, G. W. Morris, H. H. Telle, “Laser ablation for mineral analysis in the human body: integration of LIFS with LIBS,” in Biomedical Sensors, Fibers and Optical Delivery Systems, F. Baldini, N. I. Croitoru, M. Frenz, I. Lundstrom, M. Miyagi, R. Pratesi, O. S. Wolfbeis, eds., Proc. SPIE3570, 263–271 (1998).
[CrossRef]

Lacour, J. L.

D. Menut, P. le Coustumer, J. L. Lacour, P. Fichet, A. Rivoallan, “Analysis of alluvial soils for environmental survey by micro LIBS,” in Laser-Induced Breakdown Spectroscopy and Applications (Optical Society of America, Washington, D.C., 2002), paper ThE2.

Laucks, M. L.

M. L. Laucks, G. Roll, G. Schweiger, E. J. Davis, “Physical and chemical (Raman) characterisation of bio-aerosols—pollen,” J. Aerosol Sci. 31, 307–319 (2000).
[CrossRef]

le Coustumer, P.

D. Menut, P. le Coustumer, J. L. Lacour, P. Fichet, A. Rivoallan, “Analysis of alluvial soils for environmental survey by micro LIBS,” in Laser-Induced Breakdown Spectroscopy and Applications (Optical Society of America, Washington, D.C., 2002), paper ThE2.

Leone, N.

Liska, M.

O. Samek, M. Liska, J. Kaiser, V. Krzyzanek, D. C. S. Beddows, A. Belenkevitch, G. W. Morris, H. H. Telle, “Laser ablation for mineral analysis in the human body: integration of LIFS with LIBS,” in Biomedical Sensors, Fibers and Optical Delivery Systems, F. Baldini, N. I. Croitoru, M. Frenz, I. Lundstrom, M. Miyagi, R. Pratesi, O. S. Wolfbeis, eds., Proc. SPIE3570, 263–271 (1998).
[CrossRef]

Liška, M.

D. C. S. Beddows, O. Samek, M. Liška, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 57, 1461–1471 (2002).
[CrossRef]

Lochte, T.

B. Schrader, B. Dippel, I. Erb, S. Keller, T. Lochte, H. Schulz, E. Tatsch, S. Wessel, “NIR Raman spectroscopy in medicine and biology: results and aspects,” J. Mol. Struct. 480–481, 21–32 (1999).
[CrossRef]

Luches, A.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1271 (1998).
[CrossRef]

Mathias-Maser, S.

S. Mathias-Maser, “Primary biological aerosol particles: their significance, sources, sampling methods and size distribution in the atmosphere,” in Atmospheric Particles, R. M. Harrison, R. Van Grieken, eds. (Wiley, Chichester, UK, 1998).

Mayor, J. E.

E. Gard, J. E. Mayor, B. D. Morrical, T. Dienes, D. P. Fergenson, K. A. Prather, “Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS,” Anal. Chem. 69, 4083–4091 (1997).
[CrossRef]

McNesby, K. L.

Menut, D.

D. Menut, P. le Coustumer, J. L. Lacour, P. Fichet, A. Rivoallan, “Analysis of alluvial soils for environmental survey by micro LIBS,” in Laser-Induced Breakdown Spectroscopy and Applications (Optical Society of America, Washington, D.C., 2002), paper ThE2.

Miziolek, A. W.

Morel, S.

S. Morel, N. Leone, P. Adam, J. Amouroux, “Detection of bacteria by time-resolved laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6184–6191 (2003).
[CrossRef] [PubMed]

S. Morel, P. Adam, J. Amouroux, Centre d’Etudes du Bouchet, Service DPHY, 91710 Vert-Le-Petit, France (personal communication, 2002).

Morrical, B. D.

E. Gard, J. E. Mayor, B. D. Morrical, T. Dienes, D. P. Fergenson, K. A. Prather, “Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS,” Anal. Chem. 69, 4083–4091 (1997).
[CrossRef]

Morris, G. W.

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B 56, 947–960 (2001).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, V. Krzyzanek, D. C. S. Beddows, A. Belenkevitch, G. W. Morris, H. H. Telle, “Laser ablation for mineral analysis in the human body: integration of LIFS with LIBS,” in Biomedical Sensors, Fibers and Optical Delivery Systems, F. Baldini, N. I. Croitoru, M. Frenz, I. Lundstrom, M. Miyagi, R. Pratesi, O. S. Wolfbeis, eds., Proc. SPIE3570, 263–271 (1998).
[CrossRef]

Morris, S. C.

A. R. Jacobson, S. C. Morris, “The primary air pollutants—viable particles, their occurrence, sources and effects,” in Air Pollution, 3rd ed., A. C. Stern, ed. (Academic, New York, 1976).

Murrey, W. G.

W. G. Murrey, “The elemental analysis of pollen using the technique of laser-induced breakdown spectroscopy,” internal project report (Department of Physics, University of Wales, Swansea, UK, 2002).

Nachman, P.

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyser for rapid measurement of single micrometer-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
[CrossRef]

Niles, S.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Orr, C. S.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Pan, Y.

Y. Pan, S. C. Hill, R. G. Pinnick, S. Holler, R. K. Chang, G. Bottiger, “Fluorescence spectra of individual flowing airborne biological particles measured in real time,” presented at the 1999 Optical Society of America Annual Meeting, Santa Clara, Calif., 26–30 September 1999.

Pan, Y. L.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

Perrone, A.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1271 (1998).
[CrossRef]

Pinnick, R. G.

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyser for rapid measurement of single micrometer-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
[CrossRef]

Y. Pan, S. C. Hill, R. G. Pinnick, S. Holler, R. K. Chang, G. Bottiger, “Fluorescence spectra of individual flowing airborne biological particles measured in real time,” presented at the 1999 Optical Society of America Annual Meeting, Santa Clara, Calif., 26–30 September 1999.

Prather, K. A.

D. T. Suess, K. A. Prather, “Mass spectrometry of aerosols,” Chem. Rev. 99, 3007–3035 (1999).
[CrossRef]

E. Gard, J. E. Mayor, B. D. Morrical, T. Dienes, D. P. Fergenson, K. A. Prather, “Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS,” Anal. Chem. 69, 4083–4091 (1997).
[CrossRef]

Rivoallan, A.

D. Menut, P. le Coustumer, J. L. Lacour, P. Fichet, A. Rivoallan, “Analysis of alluvial soils for environmental survey by micro LIBS,” in Laser-Induced Breakdown Spectroscopy and Applications (Optical Society of America, Washington, D.C., 2002), paper ThE2.

Roll, G.

M. L. Laucks, G. Roll, G. Schweiger, E. J. Davis, “Physical and chemical (Raman) characterisation of bio-aerosols—pollen,” J. Aerosol Sci. 31, 307–319 (2000).
[CrossRef]

Sabsabi, M.

L. St-Onge, R. Sing, S. Béchard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A Suppl. 69, S913–S916 (1999).

Samek, O.

D. C. S. Beddows, O. Samek, M. Liška, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 57, 1461–1471 (2002).
[CrossRef]

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B 56, 947–960 (2001).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, V. Krzyzanek, D. C. S. Beddows, A. Belenkevitch, G. W. Morris, H. H. Telle, “Laser ablation for mineral analysis in the human body: integration of LIFS with LIBS,” in Biomedical Sensors, Fibers and Optical Delivery Systems, F. Baldini, N. I. Croitoru, M. Frenz, I. Lundstrom, M. Miyagi, R. Pratesi, O. S. Wolfbeis, eds., Proc. SPIE3570, 263–271 (1998).
[CrossRef]

Samuels, A. C.

Schenzel, K.

B. Schrader, H. H. Klump, K. Schenzel, H. Schulz, “Non-destructive NIR FT Raman analysis of plants,” J. Mol. Struct. 509, 201–212 (1999).
[CrossRef]

Schrader, B.

B. Schrader, H. H. Klump, K. Schenzel, H. Schulz, “Non-destructive NIR FT Raman analysis of plants,” J. Mol. Struct. 509, 201–212 (1999).
[CrossRef]

B. Schrader, B. Dippel, I. Erb, S. Keller, T. Lochte, H. Schulz, E. Tatsch, S. Wessel, “NIR Raman spectroscopy in medicine and biology: results and aspects,” J. Mol. Struct. 480–481, 21–32 (1999).
[CrossRef]

Schulz, H.

B. Schrader, B. Dippel, I. Erb, S. Keller, T. Lochte, H. Schulz, E. Tatsch, S. Wessel, “NIR Raman spectroscopy in medicine and biology: results and aspects,” J. Mol. Struct. 480–481, 21–32 (1999).
[CrossRef]

B. Schrader, H. H. Klump, K. Schenzel, H. Schulz, “Non-destructive NIR FT Raman analysis of plants,” J. Mol. Struct. 509, 201–212 (1999).
[CrossRef]

Schweiger, G.

M. L. Laucks, G. Roll, G. Schweiger, E. J. Davis, “Physical and chemical (Raman) characterisation of bio-aerosols—pollen,” J. Aerosol Sci. 31, 307–319 (2000).
[CrossRef]

Sing, R.

L. St-Onge, R. Sing, S. Béchard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A Suppl. 69, S913–S916 (1999).

Sowa, S.

S. Sowa, K. F. Connor, “Biochemical changes during pollen germination measured in vivo by infrared spectroscopy,” Plant Sci. 105, 23–30 (1995).
[CrossRef]

St-Onge, L.

L. St-Onge, R. Sing, S. Béchard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A Suppl. 69, S913–S916 (1999).

Suess, D. T.

D. T. Suess, K. A. Prather, “Mass spectrometry of aerosols,” Chem. Rev. 99, 3007–3035 (1999).
[CrossRef]

Tatsch, E.

B. Schrader, B. Dippel, I. Erb, S. Keller, T. Lochte, H. Schulz, E. Tatsch, S. Wessel, “NIR Raman spectroscopy in medicine and biology: results and aspects,” J. Mol. Struct. 480–481, 21–32 (1999).
[CrossRef]

Telle, H. H.

D. C. S. Beddows, O. Samek, M. Liška, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 57, 1461–1471 (2002).
[CrossRef]

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B 56, 947–960 (2001).
[CrossRef]

O. Samek, M. Liska, J. Kaiser, V. Krzyzanek, D. C. S. Beddows, A. Belenkevitch, G. W. Morris, H. H. Telle, “Laser ablation for mineral analysis in the human body: integration of LIFS with LIBS,” in Biomedical Sensors, Fibers and Optical Delivery Systems, F. Baldini, N. I. Croitoru, M. Frenz, I. Lundstrom, M. Miyagi, R. Pratesi, O. S. Wolfbeis, eds., Proc. SPIE3570, 263–271 (1998).
[CrossRef]

Videen, G.

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyser for rapid measurement of single micrometer-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
[CrossRef]

Vivien, C.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1271 (1998).
[CrossRef]

Wessel, S.

B. Schrader, B. Dippel, I. Erb, S. Keller, T. Lochte, H. Schulz, E. Tatsch, S. Wessel, “NIR Raman spectroscopy in medicine and biology: results and aspects,” J. Mol. Struct. 480–481, 21–32 (1999).
[CrossRef]

Whitby, K. J.

K. J. Whitby, “The physical characteristics of sulphur aerosols,” Atmos. Environ. 12, 135–159 (1978).
[CrossRef]

Yoder, G. D.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 851–864 (2001).
[CrossRef]

Aerosol Sci. Technol. (1)

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyser for rapid measurement of single micrometer-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
[CrossRef]

Anal. Chem. (1)

E. Gard, J. E. Mayor, B. D. Morrical, T. Dienes, D. P. Fergenson, K. A. Prather, “Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS,” Anal. Chem. 69, 4083–4091 (1997).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A Suppl. (1)

L. St-Onge, R. Sing, S. Béchard, M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys. A Suppl. 69, S913–S916 (1999).

Atmos. Environ. (1)

K. J. Whitby, “The physical characteristics of sulphur aerosols,” Atmos. Environ. 12, 135–159 (1978).
[CrossRef]

Chem. Rev. (1)

D. T. Suess, K. A. Prather, “Mass spectrometry of aerosols,” Chem. Rev. 99, 3007–3035 (1999).
[CrossRef]

Field Anal. Chem. Technol. (1)

S. C. Hill, R. G. Pinnick, S. Niles, Y. L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C. S. Orr, G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3, 221–239 (1999).
[CrossRef]

J. Aerosol Sci. (1)

M. L. Laucks, G. Roll, G. Schweiger, E. J. Davis, “Physical and chemical (Raman) characterisation of bio-aerosols—pollen,” J. Aerosol Sci. 31, 307–319 (2000).
[CrossRef]

J. Chem. Phys. (1)

P. J. Knowles, P. J. Hoy, D. C. Cartwright, “The A2∏-X2∑+ and B2∑+-X2∑+ violet systems of the CN radical: accurate multi-reference configuration interaction calculations of the radiative transition probabilities,” J. Chem. Phys. 89, 7334–7343 (1989).
[CrossRef]

J. Mol. Struct. (2)

B. Schrader, H. H. Klump, K. Schenzel, H. Schulz, “Non-destructive NIR FT Raman analysis of plants,” J. Mol. Struct. 509, 201–212 (1999).
[CrossRef]

B. Schrader, B. Dippel, I. Erb, S. Keller, T. Lochte, H. Schulz, E. Tatsch, S. Wessel, “NIR Raman spectroscopy in medicine and biology: results and aspects,” J. Mol. Struct. 480–481, 21–32 (1999).
[CrossRef]

J. Phys. D (1)

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1271 (1998).
[CrossRef]

Plant Sci. (1)

S. Sowa, K. F. Connor, “Biochemical changes during pollen germination measured in vivo by infrared spectroscopy,” Plant Sci. 105, 23–30 (1995).
[CrossRef]

Spectrochim. Acta B (4)

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 851–864 (2001).
[CrossRef]

D. C. S. Beddows, O. Samek, M. Liška, H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta B 57, 1461–1471 (2002).
[CrossRef]

D. C. S. Beddows, “Addendum to ‘Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,’” Spectrochim. Acta B 58, 583–584 (2003).
[CrossRef]

H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta B 56, 947–960 (2001).
[CrossRef]

Other (10)

Y. Pan, S. C. Hill, R. G. Pinnick, S. Holler, R. K. Chang, G. Bottiger, “Fluorescence spectra of individual flowing airborne biological particles measured in real time,” presented at the 1999 Optical Society of America Annual Meeting, Santa Clara, Calif., 26–30 September 1999.

D. Menut, P. le Coustumer, J. L. Lacour, P. Fichet, A. Rivoallan, “Analysis of alluvial soils for environmental survey by micro LIBS,” in Laser-Induced Breakdown Spectroscopy and Applications (Optical Society of America, Washington, D.C., 2002), paper ThE2.

S. Bean, “Detection of heavy metal trace elements in tree samples,” internal project report (Department of Physics, University of Wales, Swansea, UK2002).

O. Samek, M. Liska, J. Kaiser, V. Krzyzanek, D. C. S. Beddows, A. Belenkevitch, G. W. Morris, H. H. Telle, “Laser ablation for mineral analysis in the human body: integration of LIFS with LIBS,” in Biomedical Sensors, Fibers and Optical Delivery Systems, F. Baldini, N. I. Croitoru, M. Frenz, I. Lundstrom, M. Miyagi, R. Pratesi, O. S. Wolfbeis, eds., Proc. SPIE3570, 263–271 (1998).
[CrossRef]

W. G. Murrey, “The elemental analysis of pollen using the technique of laser-induced breakdown spectroscopy,” internal project report (Department of Physics, University of Wales, Swansea, UK, 2002).

A. W. Miziolek, A. C. Samuels, U.S. Army Research Laboratory, Aberdeen Proving Ground, Md. 21005 (personal communication, 2002).

S. Morel, P. Adam, J. Amouroux, Centre d’Etudes du Bouchet, Service DPHY, 91710 Vert-Le-Petit, France (personal communication, 2002).

W. C. Hinds, Aerosol Technology: Properties, Behaviour, and Measurement of Airborne Particles, 2nd ed. (Wiley, New York, 1999).

S. Mathias-Maser, “Primary biological aerosol particles: their significance, sources, sampling methods and size distribution in the atmosphere,” in Atmospheric Particles, R. M. Harrison, R. Van Grieken, eds. (Wiley, Chichester, UK, 1998).

A. R. Jacobson, S. C. Morris, “The primary air pollutants—viable particles, their occurrence, sources and effects,” in Air Pollution, 3rd ed., A. C. Stern, ed. (Academic, New York, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Selected examples of lily pollen samples, viewed under a microscope with 10× or 100× magnification. Examples of flowers: yellow lily with individual pollen grain size ∼8 µm × ∼3 µm; white lily with individual pollen grain size ∼12 µm × ∼6.5 µm; dark lily with individual pollen grain size ∼10 µm × ∼3.5 µm; marguerite with individual pollen grain size of ∼2-µm diameter.

Fig. 2
Fig. 2

Schematic of the experimental setup and the measurement method used to collect LIBS spectra. (a) For referencing and calibration, a blank LIBS spectrum is collected for breakdown in air (the pulse energy absorbed in a beam dump). (b) Pollen samples on the end of a target pin are moved into the ablation site located next to a focus location guide, and a single-pulse exposure LIBS spectrum is collected. BD, beam dump; FLP, focus location pin; TP, target pin; AM, annular mirror; L, laser; SP, spectrometer.

Fig. 3
Fig. 3

Single-pulse overview LIBS spectrum of a grain of lily pollen, recorded with low resolution (Δλ = 1.6 nm); prominent atomic line and molecular band features are indicated. For details see text.

Fig. 4
Fig. 4

Selected wavelength segments for the LIBS spectrum (high resolution, Δλ = 0.012 nm) of pollen from a white lily; information on the numbered spectral peaks is summarized in Table 1. For further details see text.

Fig. 5
Fig. 5

Spectral segments for single-pulse exposure of lily pollen samples; pulse-to-pulse intensity variations are due to fluctuations in laser pulse energy and related differences in plasma temperatures.

Fig. 6
Fig. 6

Distribution of the band intensity ratio CN (A-X, 0-0)/CN(A-X, 1-1), for single-pulse LIBS measurements for 40 pollen particles of a white lily.

Fig. 7
Fig. 7

Correlation of peak intensity variations in repetitive single-pulse LIBS spectra of lily pollens. (a) CN (B-X, Δv = 0); bandheads (1-1) ↔ (0-0); (b) Ca ii (D 1 line) ↔ CN (B-X, 0-0 bandhead); (c) Ca i (4p 1 P 1-4s 1 S 0 line) ↔ CN (B-X, 1-0 bandhead). S, slope of data point series. For further details see text.

Fig. 8
Fig. 8

Two wavelength segments for LIBS spectra (high resolution, Δλ = 0.012 nm) of three pollens: 1, marguerite (“daisy”); 2, white lily; 3, yellow lily. Some of the prominent peaks of major and minor elements are indicated. For further details see text.

Fig. 9
Fig. 9

Raman spectra of a range of pollen: (a) yellow lily, (b) white lily, (c) dark lily, (d) marguerite. In (a)–(c) the heavier traces represent data recorded at the edge of an individual pollen particle and the lighter traces represent data recorded at the center of the same particle. Designations of Raman band groups: BEN, aromatic ring stretch; CAR, carotenoid; CHL, chlorophyll; CH2, deformation vibration δ(CH); PHE, phenylalanine.

Tables (2)

Tables Icon

Table 1 Transition Wavelengths (in nanometers) of Atom Lines and Molecular Bandsa

Tables Icon

Table 2 Comparison of Relative Concentrations of Atomic and Molecular Components in Selected Pollen Samplesa

Metrics