Abstract

The development of a unique spectrometer based on an array of Geiger photodiodes has been shown to enhance the performance of laser-induced breakdown spectroscopy (LIBS) instrumentation. These compact, silicon-based detectors eliminate the need for postamplification electronics, allow for the detection of single photons at room temperature, and do not require complex gating-timing circuitry. The detectors have dark-count rates of <500 Hz at room temperature and a good response from the UV to the near IR. Their high sensitivity makes them candidates for standoff analysis as part of a LIBS spectrum analyzer.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836–1844 (1997).
    [CrossRef]
  2. A. K. Knight, N. L. Scherbarth, D. L. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
    [CrossRef]
  3. R. Farrell, F. Olschner, E. Frederick, L. McConchie, K. Vanderpuye, M. R. Squillante, G. Entine, “Large area silicon avalanche photodiodes for scintillation detectors,” Nucl. Instrum. Methods A 288, 131–136 (1990).
    [CrossRef]
  4. R. Farrell, K. Vanderpuye, L. Cirignano, M. R. Squillante, G. Entine, “Radiation detection performance of very high gain avalanche photodiodes,” Nucl. Instrum. Methods A 353, 176–179 (1994).
    [CrossRef]
  5. R. Redus, R. Farrell, “Gain and noise in very high gain avalanche photodiodes: theory and experiment,” in Hard X-Ray/Gamma Ray and Neutron Optic Sensors and Applications, R. B. Hoover, F. P. Doty, eds., Proc. SPIE2859, 288–297 (1996).
    [CrossRef]
  6. S. Vasile, P. Gothoskar, R. Farrell, D. Sdrulla, “Photon detection with high gain avalanche photodiode arrays,” IEEE Trans. Nucl. Sci. 45, 720–723 (1997).
    [CrossRef]
  7. R. G. W. Brown, R. Jones, J. G. Rarity, K. D. Ridley, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2. Active quenching,” Appl. Opt. 26, 2383–2388 (1987).
    [CrossRef] [PubMed]
  8. D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnson, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
    [CrossRef]
  9. J. E. Carranza, D. W. Hahn, “Plasma volume considerations for analysis of gaseous and aerosol samples using laser-induced breakdown spectroscopy,” J. Anal. Atom. Spectrosc. 17, 1534–1539 (2002).
    [CrossRef]
  10. K. M. Lo, S. L. Lui, X. Y. Pu, N. H. Cheung, “Resonance-enhanced LIBS,” in Laser Induced Plasma Spectroscopy and Applications, A. Miziolek, V. Palleschi, eds., Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 15–17.
  11. J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air particles using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 851–864 (2001).
    [CrossRef]

2002 (1)

J. E. Carranza, D. W. Hahn, “Plasma volume considerations for analysis of gaseous and aerosol samples using laser-induced breakdown spectroscopy,” J. Anal. Atom. Spectrosc. 17, 1534–1539 (2002).
[CrossRef]

2001 (2)

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air particles using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 851–864 (2001).
[CrossRef]

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnson, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

2000 (1)

1997 (2)

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836–1844 (1997).
[CrossRef]

S. Vasile, P. Gothoskar, R. Farrell, D. Sdrulla, “Photon detection with high gain avalanche photodiode arrays,” IEEE Trans. Nucl. Sci. 45, 720–723 (1997).
[CrossRef]

1994 (1)

R. Farrell, K. Vanderpuye, L. Cirignano, M. R. Squillante, G. Entine, “Radiation detection performance of very high gain avalanche photodiodes,” Nucl. Instrum. Methods A 353, 176–179 (1994).
[CrossRef]

1990 (1)

R. Farrell, F. Olschner, E. Frederick, L. McConchie, K. Vanderpuye, M. R. Squillante, G. Entine, “Large area silicon avalanche photodiodes for scintillation detectors,” Nucl. Instrum. Methods A 288, 131–136 (1990).
[CrossRef]

1987 (1)

Arsenault, G. R.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnson, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Brown, R. G. W.

Carranza, J. E.

J. E. Carranza, D. W. Hahn, “Plasma volume considerations for analysis of gaseous and aerosol samples using laser-induced breakdown spectroscopy,” J. Anal. Atom. Spectrosc. 17, 1534–1539 (2002).
[CrossRef]

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnson, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air particles using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 851–864 (2001).
[CrossRef]

Cheung, N. H.

K. M. Lo, S. L. Lui, X. Y. Pu, N. H. Cheung, “Resonance-enhanced LIBS,” in Laser Induced Plasma Spectroscopy and Applications, A. Miziolek, V. Palleschi, eds., Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 15–17.

Cirignano, L.

R. Farrell, K. Vanderpuye, L. Cirignano, M. R. Squillante, G. Entine, “Radiation detection performance of very high gain avalanche photodiodes,” Nucl. Instrum. Methods A 353, 176–179 (1994).
[CrossRef]

Cremers, D. L.

Entine, G.

R. Farrell, K. Vanderpuye, L. Cirignano, M. R. Squillante, G. Entine, “Radiation detection performance of very high gain avalanche photodiodes,” Nucl. Instrum. Methods A 353, 176–179 (1994).
[CrossRef]

R. Farrell, F. Olschner, E. Frederick, L. McConchie, K. Vanderpuye, M. R. Squillante, G. Entine, “Large area silicon avalanche photodiodes for scintillation detectors,” Nucl. Instrum. Methods A 288, 131–136 (1990).
[CrossRef]

Farrell, R.

S. Vasile, P. Gothoskar, R. Farrell, D. Sdrulla, “Photon detection with high gain avalanche photodiode arrays,” IEEE Trans. Nucl. Sci. 45, 720–723 (1997).
[CrossRef]

R. Farrell, K. Vanderpuye, L. Cirignano, M. R. Squillante, G. Entine, “Radiation detection performance of very high gain avalanche photodiodes,” Nucl. Instrum. Methods A 353, 176–179 (1994).
[CrossRef]

R. Farrell, F. Olschner, E. Frederick, L. McConchie, K. Vanderpuye, M. R. Squillante, G. Entine, “Large area silicon avalanche photodiodes for scintillation detectors,” Nucl. Instrum. Methods A 288, 131–136 (1990).
[CrossRef]

R. Redus, R. Farrell, “Gain and noise in very high gain avalanche photodiodes: theory and experiment,” in Hard X-Ray/Gamma Ray and Neutron Optic Sensors and Applications, R. B. Hoover, F. P. Doty, eds., Proc. SPIE2859, 288–297 (1996).
[CrossRef]

Ferris, M. J.

Fisher, B. T.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air particles using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 851–864 (2001).
[CrossRef]

Flower, W. L.

Frederick, E.

R. Farrell, F. Olschner, E. Frederick, L. McConchie, K. Vanderpuye, M. R. Squillante, G. Entine, “Large area silicon avalanche photodiodes for scintillation detectors,” Nucl. Instrum. Methods A 288, 131–136 (1990).
[CrossRef]

Gothoskar, P.

S. Vasile, P. Gothoskar, R. Farrell, D. Sdrulla, “Photon detection with high gain avalanche photodiode arrays,” IEEE Trans. Nucl. Sci. 45, 720–723 (1997).
[CrossRef]

Hahn, D. W.

J. E. Carranza, D. W. Hahn, “Plasma volume considerations for analysis of gaseous and aerosol samples using laser-induced breakdown spectroscopy,” J. Anal. Atom. Spectrosc. 17, 1534–1539 (2002).
[CrossRef]

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnson, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air particles using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 851–864 (2001).
[CrossRef]

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836–1844 (1997).
[CrossRef]

Hencken, K. R.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnson, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

D. W. Hahn, W. L. Flower, K. R. Hencken, “Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836–1844 (1997).
[CrossRef]

Johnson, H. A.

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnson, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Jones, R.

Knight, A. K.

Lo, K. M.

K. M. Lo, S. L. Lui, X. Y. Pu, N. H. Cheung, “Resonance-enhanced LIBS,” in Laser Induced Plasma Spectroscopy and Applications, A. Miziolek, V. Palleschi, eds., Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 15–17.

Lui, S. L.

K. M. Lo, S. L. Lui, X. Y. Pu, N. H. Cheung, “Resonance-enhanced LIBS,” in Laser Induced Plasma Spectroscopy and Applications, A. Miziolek, V. Palleschi, eds., Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 15–17.

McConchie, L.

R. Farrell, F. Olschner, E. Frederick, L. McConchie, K. Vanderpuye, M. R. Squillante, G. Entine, “Large area silicon avalanche photodiodes for scintillation detectors,” Nucl. Instrum. Methods A 288, 131–136 (1990).
[CrossRef]

Olschner, F.

R. Farrell, F. Olschner, E. Frederick, L. McConchie, K. Vanderpuye, M. R. Squillante, G. Entine, “Large area silicon avalanche photodiodes for scintillation detectors,” Nucl. Instrum. Methods A 288, 131–136 (1990).
[CrossRef]

Pu, X. Y.

K. M. Lo, S. L. Lui, X. Y. Pu, N. H. Cheung, “Resonance-enhanced LIBS,” in Laser Induced Plasma Spectroscopy and Applications, A. Miziolek, V. Palleschi, eds., Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 15–17.

Rarity, J. G.

Redus, R.

R. Redus, R. Farrell, “Gain and noise in very high gain avalanche photodiodes: theory and experiment,” in Hard X-Ray/Gamma Ray and Neutron Optic Sensors and Applications, R. B. Hoover, F. P. Doty, eds., Proc. SPIE2859, 288–297 (1996).
[CrossRef]

Ridley, K. D.

Scherbarth, N. L.

Sdrulla, D.

S. Vasile, P. Gothoskar, R. Farrell, D. Sdrulla, “Photon detection with high gain avalanche photodiode arrays,” IEEE Trans. Nucl. Sci. 45, 720–723 (1997).
[CrossRef]

Squillante, M. R.

R. Farrell, K. Vanderpuye, L. Cirignano, M. R. Squillante, G. Entine, “Radiation detection performance of very high gain avalanche photodiodes,” Nucl. Instrum. Methods A 353, 176–179 (1994).
[CrossRef]

R. Farrell, F. Olschner, E. Frederick, L. McConchie, K. Vanderpuye, M. R. Squillante, G. Entine, “Large area silicon avalanche photodiodes for scintillation detectors,” Nucl. Instrum. Methods A 288, 131–136 (1990).
[CrossRef]

Vanderpuye, K.

R. Farrell, K. Vanderpuye, L. Cirignano, M. R. Squillante, G. Entine, “Radiation detection performance of very high gain avalanche photodiodes,” Nucl. Instrum. Methods A 353, 176–179 (1994).
[CrossRef]

R. Farrell, F. Olschner, E. Frederick, L. McConchie, K. Vanderpuye, M. R. Squillante, G. Entine, “Large area silicon avalanche photodiodes for scintillation detectors,” Nucl. Instrum. Methods A 288, 131–136 (1990).
[CrossRef]

Vasile, S.

S. Vasile, P. Gothoskar, R. Farrell, D. Sdrulla, “Photon detection with high gain avalanche photodiode arrays,” IEEE Trans. Nucl. Sci. 45, 720–723 (1997).
[CrossRef]

Yoder, G. D.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air particles using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 851–864 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (2)

IEEE Trans. Nucl. Sci. (1)

S. Vasile, P. Gothoskar, R. Farrell, D. Sdrulla, “Photon detection with high gain avalanche photodiode arrays,” IEEE Trans. Nucl. Sci. 45, 720–723 (1997).
[CrossRef]

J. Anal. Atom. Spectrosc. (1)

J. E. Carranza, D. W. Hahn, “Plasma volume considerations for analysis of gaseous and aerosol samples using laser-induced breakdown spectroscopy,” J. Anal. Atom. Spectrosc. 17, 1534–1539 (2002).
[CrossRef]

Nucl. Instrum. Methods A (2)

R. Farrell, F. Olschner, E. Frederick, L. McConchie, K. Vanderpuye, M. R. Squillante, G. Entine, “Large area silicon avalanche photodiodes for scintillation detectors,” Nucl. Instrum. Methods A 288, 131–136 (1990).
[CrossRef]

R. Farrell, K. Vanderpuye, L. Cirignano, M. R. Squillante, G. Entine, “Radiation detection performance of very high gain avalanche photodiodes,” Nucl. Instrum. Methods A 353, 176–179 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

D. W. Hahn, J. E. Carranza, G. R. Arsenault, H. A. Johnson, K. R. Hencken, “Aerosol generation system for development and calibration of laser-induced breakdown spectroscopy instrumentation,” Rev. Sci. Instrum. 72, 3706–3713 (2001).
[CrossRef]

Spectrochim. Acta B (1)

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air particles using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 851–864 (2001).
[CrossRef]

Other (2)

K. M. Lo, S. L. Lui, X. Y. Pu, N. H. Cheung, “Resonance-enhanced LIBS,” in Laser Induced Plasma Spectroscopy and Applications, A. Miziolek, V. Palleschi, eds., Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 15–17.

R. Redus, R. Farrell, “Gain and noise in very high gain avalanche photodiodes: theory and experiment,” in Hard X-Ray/Gamma Ray and Neutron Optic Sensors and Applications, R. B. Hoover, F. P. Doty, eds., Proc. SPIE2859, 288–297 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Dark counts as a function of applied bias at room temperature for a series of 30-µm GPDs. Each curve represents a different pixel on the same device.

Fig. 2
Fig. 2

GPD count rate as a function of relative incident intensity. The data show a linear response over six decades of operation.

Fig. 3
Fig. 3

(a) Response of the GPD to a 5-mW 635-nm laser pulse (top curve). The intensity of the pulse is enough to saturate the GPD counts. The duration of each pulse is ∼10 ns, which cannot be resolved on the time scale shown. (b) An electronic switch (middle curve) is used to turn the GPD on and off during the arrival of the laser pulse. The GPD recovery time is faster than the 100-ns switch.

Fig. 4
Fig. 4

(a) Photograph of the 0.5-in. (1.27-cm) diameter, 12-pin package for the GPD. Bonding wires connect the individual pixels to the posts, and a ceramic standoff isolates the chip from the package. The test pattern on the array contains 117 individual pixels with diameters ranging from 10 to 110 µm. (b) Close-up photograph of an array of 30- and 10-µm GPD detectors with a pixel pitch of 100 µm.

Fig. 5
Fig. 5

GPD signal versus sodium concentration; Nd:YAG excitation was used. The background, which was recorded before each change in sodium concentration, was subtracted from each data point. The counting duration was 500 µs, with a 60-µs delay following the laser pulse. The error bars represent standard errors of 10% as determined from the variation in averaging of 100 breakdown events. ppm, parts in 106.

Metrics