Abstract

The performance features of line-focused laser ablation for the characterization of interfaces in layered materials by laser-induced plasma spectrometry (LIPS) have been compared with the point-focusing method in terms of signal precision, signal-to-noise ratio, ablation rates, and surface sensitivity. In both optical configurations a pulsed Nd:YAG laser beam operating at 532 nm, with a homogeneous energy distribution (flattop laser), is used to generate point and microline plasmas on the sample surface. Subsequent light from the plasma is spectrally resolved and detected with an imaging spectrograph and an intensified charge-coupled-device detector that is binned along the slit-height direction. Line-focusing LIPS permits much higher laser power input while maintaining relatively low laser fluence, thus yielding better surface sensitivity and improved detection power. Values of the signal-to-noise ratio are improved by a factor of 6. In addition the ablation rate is 9 nm/pulse with the microline approach compared with 23 nm/pulse obtained with the point-focusing method. The results demonstrate that the microline-focusing approach is suitable for the depth analysis of coated and layered materials.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. García, M. Corral, J. M. Vadillo, J. J. Laserna, “Angle-resolved laser-induced breakdown spectrometry for depth profiling of coated materials,” Appl. Spectrosc. 54, 1027–1031 (2000).
    [CrossRef]
  2. V. Margetic, M. Bolshov, A. Stockhaus, K. Niemax, R. Hergenröder, “Depth profiling of multilayer samples using femtosecond laser ablation,” J. Anal. At. Spectrom. 16, 616–621 (2001).
    [CrossRef]
  3. J. M. Vadillo, J. M. Fernández Romero, C. Rodriguez, J. J. Laserna, “Depth-resolved analysis by laser-induced breakdown spectrometry at reduced pressure,” Surf. Interface Anal. 26, 995–1000 (1998).
    [CrossRef]
  4. J. M. Vadillo, J. J. Laserna, “Depth-resolved analysis of multilayered samples by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 12, 859–862 (1997).
    [CrossRef]
  5. H. Häkkänen, J. Houni, S. Kaski, J. E. I. Korppi-Tommola, “Analysis of paper by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 737–742 (2001).
    [CrossRef]
  6. P. Maravelaki-Kalaitzaki, D. Anglos, V. Kilikoglou, V. Zafiropulos, “Compositional characterization of encrustation on marble with laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 887–903 (2001).
    [CrossRef]
  7. M. Milán, P. Lucena, L. M. Cabalín, J. J. Laserna, “Depth profiling of phosphorus in photonic-grade silicon using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 52, 444–448 (1998).
    [CrossRef]
  8. J. M. Vadillo, C. C. García, S. Palanco, J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308-nm collimated beam”, J. Anal. At. Spectrom. 13, 793–797 (1998).
    [CrossRef]
  9. D. R. Anderson, C. W. McLeod, T. English, A. T. Smith, “Depth profile studies using laser-induced plasma emission spectrometry,” Appl. Spectrosc. 49, 691–701 (1995).
    [CrossRef]
  10. M. P. Mateo, J. M. Vadillo, J. J. Laserna, “Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 16, 1317–1321 (2001).
    [CrossRef]
  11. L. St-Onge, M. Sabsabi, “Toward quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel,” Spectrochim. Acta Part B 55, 299–308 (2000).
    [CrossRef]
  12. P. Lucena, J. M. Vadillo, J. J. Laserna, “Mapping of platinum group metals in automotive exhaust three-way catalysts using laser-induced breakdown spectrometry,” Anal. Chem. 71, 4385–4391 (1999).
    [CrossRef] [PubMed]
  13. L. M. Cabalin, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
    [CrossRef]
  14. D. Romero, J. J. Laserna, “Multielemental chemical imaging using laser-induced breakdown spectrometry,” Anal. Chem. 69, 2871–2876 (1997).
    [CrossRef] [PubMed]
  15. L. St-Onge, “A mathematical framework for modeling the compositional depth profiles obtained by pulsed laser ablation,” J. Anal. At. Spectrom. 17, 1083–1089 (2002).
    [CrossRef]
  16. M. Ivanda, K. Furic, “Line focusing in micro-Raman spectroscopy,” Appl. Opt. 31, 6371–6375 (1992).
    [CrossRef] [PubMed]
  17. J. Ramsey, S. Ranganathan, R. L. McCreery, J. Zhao, “Performance comparisons of conventional and line-focused surface Raman spectrometers,” Appl. Spectrosc. 55, 767–773 (2001).
    [CrossRef]
  18. A. Gajovic, M. Stubicar, M. Ivanda, K. Furic, “Raman spectroscopy of ball-milled TiO2,” J. Mol. Struct. 563–564, 315–320 (2001).
    [CrossRef]
  19. K. Nakamoto, “Resonance Raman spectra and biological significance of high-valent iron (iv, v) porphyrins,” Coord. Chem. Rev. 226, 153–165 (2002).
    [CrossRef]
  20. J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, “In situ Raman spectroscopic investigation of zirconium-niobium alloy corrosion under hydrothermal conditions,” J. Nucl. Mater. 298, 239–247 (2001).
    [CrossRef]
  21. J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, M. I. Aquino, I. Levin, “In situ Raman spectroscopic investigation of chromium surfaces under hydrothermal conditions,” Appl. Surf. Sci. 180, 102–118 (2001).
    [CrossRef]
  22. R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, New York, 2000).
    [CrossRef]
  23. W. N. Chen, S. S. Wang, B. Chen, A. F. Xu, C. S. Mao, “Cylindrical lens array line-focus system for X-ray laser experiments,” Chin. Phys. 12, 403–407 (1992).
  24. G. Y. Yoon, T. Imani, H. Daido, T. Jitsuno, Y. Kato, M. Nakatsuka, S. J. Wang, Z. Q. Lin, Y. Gu, G. L. Huang, H. J. Tang, G. P. Zhang, “Enhancement of X-ray lasing due to wave-front correction of line-focusing optics with a large-aperture deformable mirror,” Appl. Phys. Lett. 72, 2785–2787 (1998).
    [CrossRef]
  25. N. Yamaguchi, C. Fujikawa, T. Ohchi, T. Hara, “Dotted-array plasma production by using a line-focusing lens system with segmented prism array for a compact X-ray laser,” Jpn. J. Appl. Phys. Part 1 39, 5268–5272 (2000).
    [CrossRef]
  26. M. P. Mateo, S. Palanco, J. M. Vadillo, J. J. Laserna, “Fast atomic mapping of heterogeneous surfaces using microline-imaging laser-induced breakdown spectrometry,” Appl. Spectrosc. 54, 1429–1434 (2000).
    [CrossRef]
  27. M. P. Mateo, L. M. Cabalin, J. M. Baena, J. J. Laserna, “Surface interaction and chemical imaging in plasma spectrometry induced with a line-focused laser beam,” Spectrochim. Acta Part B 57, 601–608 (2002).
    [CrossRef]
  28. M. P. Mateo, L. M. Cabalín, J. J. Laserna, “Chemical imaging using microline laser ablation: performance comparison of Gaussian and flat-top lasers,” Appl. Spectrosc. 57, 343–348 (2003).
    [CrossRef] [PubMed]
  29. L. M. Cabalín, M. P. Mateo, J. J. Laserna, “Chemical maps of patterned samples by microline-imaging laser-induced plasma spectrometry,” Surf. Interface Anal. 35, 263–267 (2003).
    [CrossRef]

2003

M. P. Mateo, L. M. Cabalín, J. J. Laserna, “Chemical imaging using microline laser ablation: performance comparison of Gaussian and flat-top lasers,” Appl. Spectrosc. 57, 343–348 (2003).
[CrossRef] [PubMed]

L. M. Cabalín, M. P. Mateo, J. J. Laserna, “Chemical maps of patterned samples by microline-imaging laser-induced plasma spectrometry,” Surf. Interface Anal. 35, 263–267 (2003).
[CrossRef]

2002

M. P. Mateo, L. M. Cabalin, J. M. Baena, J. J. Laserna, “Surface interaction and chemical imaging in plasma spectrometry induced with a line-focused laser beam,” Spectrochim. Acta Part B 57, 601–608 (2002).
[CrossRef]

K. Nakamoto, “Resonance Raman spectra and biological significance of high-valent iron (iv, v) porphyrins,” Coord. Chem. Rev. 226, 153–165 (2002).
[CrossRef]

L. St-Onge, “A mathematical framework for modeling the compositional depth profiles obtained by pulsed laser ablation,” J. Anal. At. Spectrom. 17, 1083–1089 (2002).
[CrossRef]

2001

A. Gajovic, M. Stubicar, M. Ivanda, K. Furic, “Raman spectroscopy of ball-milled TiO2,” J. Mol. Struct. 563–564, 315–320 (2001).
[CrossRef]

V. Margetic, M. Bolshov, A. Stockhaus, K. Niemax, R. Hergenröder, “Depth profiling of multilayer samples using femtosecond laser ablation,” J. Anal. At. Spectrom. 16, 616–621 (2001).
[CrossRef]

H. Häkkänen, J. Houni, S. Kaski, J. E. I. Korppi-Tommola, “Analysis of paper by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 737–742 (2001).
[CrossRef]

P. Maravelaki-Kalaitzaki, D. Anglos, V. Kilikoglou, V. Zafiropulos, “Compositional characterization of encrustation on marble with laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 887–903 (2001).
[CrossRef]

J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, “In situ Raman spectroscopic investigation of zirconium-niobium alloy corrosion under hydrothermal conditions,” J. Nucl. Mater. 298, 239–247 (2001).
[CrossRef]

J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, M. I. Aquino, I. Levin, “In situ Raman spectroscopic investigation of chromium surfaces under hydrothermal conditions,” Appl. Surf. Sci. 180, 102–118 (2001).
[CrossRef]

M. P. Mateo, J. M. Vadillo, J. J. Laserna, “Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 16, 1317–1321 (2001).
[CrossRef]

L. M. Cabalin, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
[CrossRef]

J. Ramsey, S. Ranganathan, R. L. McCreery, J. Zhao, “Performance comparisons of conventional and line-focused surface Raman spectrometers,” Appl. Spectrosc. 55, 767–773 (2001).
[CrossRef]

2000

M. P. Mateo, S. Palanco, J. M. Vadillo, J. J. Laserna, “Fast atomic mapping of heterogeneous surfaces using microline-imaging laser-induced breakdown spectrometry,” Appl. Spectrosc. 54, 1429–1434 (2000).
[CrossRef]

C. C. García, M. Corral, J. M. Vadillo, J. J. Laserna, “Angle-resolved laser-induced breakdown spectrometry for depth profiling of coated materials,” Appl. Spectrosc. 54, 1027–1031 (2000).
[CrossRef]

L. St-Onge, M. Sabsabi, “Toward quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel,” Spectrochim. Acta Part B 55, 299–308 (2000).
[CrossRef]

N. Yamaguchi, C. Fujikawa, T. Ohchi, T. Hara, “Dotted-array plasma production by using a line-focusing lens system with segmented prism array for a compact X-ray laser,” Jpn. J. Appl. Phys. Part 1 39, 5268–5272 (2000).
[CrossRef]

1999

P. Lucena, J. M. Vadillo, J. J. Laserna, “Mapping of platinum group metals in automotive exhaust three-way catalysts using laser-induced breakdown spectrometry,” Anal. Chem. 71, 4385–4391 (1999).
[CrossRef] [PubMed]

1998

G. Y. Yoon, T. Imani, H. Daido, T. Jitsuno, Y. Kato, M. Nakatsuka, S. J. Wang, Z. Q. Lin, Y. Gu, G. L. Huang, H. J. Tang, G. P. Zhang, “Enhancement of X-ray lasing due to wave-front correction of line-focusing optics with a large-aperture deformable mirror,” Appl. Phys. Lett. 72, 2785–2787 (1998).
[CrossRef]

J. M. Vadillo, C. C. García, S. Palanco, J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308-nm collimated beam”, J. Anal. At. Spectrom. 13, 793–797 (1998).
[CrossRef]

J. M. Vadillo, J. M. Fernández Romero, C. Rodriguez, J. J. Laserna, “Depth-resolved analysis by laser-induced breakdown spectrometry at reduced pressure,” Surf. Interface Anal. 26, 995–1000 (1998).
[CrossRef]

M. Milán, P. Lucena, L. M. Cabalín, J. J. Laserna, “Depth profiling of phosphorus in photonic-grade silicon using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 52, 444–448 (1998).
[CrossRef]

1997

J. M. Vadillo, J. J. Laserna, “Depth-resolved analysis of multilayered samples by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 12, 859–862 (1997).
[CrossRef]

D. Romero, J. J. Laserna, “Multielemental chemical imaging using laser-induced breakdown spectrometry,” Anal. Chem. 69, 2871–2876 (1997).
[CrossRef] [PubMed]

1995

1992

M. Ivanda, K. Furic, “Line focusing in micro-Raman spectroscopy,” Appl. Opt. 31, 6371–6375 (1992).
[CrossRef] [PubMed]

W. N. Chen, S. S. Wang, B. Chen, A. F. Xu, C. S. Mao, “Cylindrical lens array line-focus system for X-ray laser experiments,” Chin. Phys. 12, 403–407 (1992).

Anderson, D. R.

Anglos, D.

P. Maravelaki-Kalaitzaki, D. Anglos, V. Kilikoglou, V. Zafiropulos, “Compositional characterization of encrustation on marble with laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 887–903 (2001).
[CrossRef]

Aquino, M. I.

J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, M. I. Aquino, I. Levin, “In situ Raman spectroscopic investigation of chromium surfaces under hydrothermal conditions,” Appl. Surf. Sci. 180, 102–118 (2001).
[CrossRef]

Baena, J. M.

M. P. Mateo, L. M. Cabalin, J. M. Baena, J. J. Laserna, “Surface interaction and chemical imaging in plasma spectrometry induced with a line-focused laser beam,” Spectrochim. Acta Part B 57, 601–608 (2002).
[CrossRef]

Bolshov, M.

V. Margetic, M. Bolshov, A. Stockhaus, K. Niemax, R. Hergenröder, “Depth profiling of multilayer samples using femtosecond laser ablation,” J. Anal. At. Spectrom. 16, 616–621 (2001).
[CrossRef]

Bowers, W. J.

J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, “In situ Raman spectroscopic investigation of zirconium-niobium alloy corrosion under hydrothermal conditions,” J. Nucl. Mater. 298, 239–247 (2001).
[CrossRef]

J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, M. I. Aquino, I. Levin, “In situ Raman spectroscopic investigation of chromium surfaces under hydrothermal conditions,” Appl. Surf. Sci. 180, 102–118 (2001).
[CrossRef]

Cabalin, L. M.

M. P. Mateo, L. M. Cabalin, J. M. Baena, J. J. Laserna, “Surface interaction and chemical imaging in plasma spectrometry induced with a line-focused laser beam,” Spectrochim. Acta Part B 57, 601–608 (2002).
[CrossRef]

L. M. Cabalin, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
[CrossRef]

Cabalín, L. M.

Chen, B.

W. N. Chen, S. S. Wang, B. Chen, A. F. Xu, C. S. Mao, “Cylindrical lens array line-focus system for X-ray laser experiments,” Chin. Phys. 12, 403–407 (1992).

Chen, W. N.

W. N. Chen, S. S. Wang, B. Chen, A. F. Xu, C. S. Mao, “Cylindrical lens array line-focus system for X-ray laser experiments,” Chin. Phys. 12, 403–407 (1992).

Corral, M.

Daido, H.

G. Y. Yoon, T. Imani, H. Daido, T. Jitsuno, Y. Kato, M. Nakatsuka, S. J. Wang, Z. Q. Lin, Y. Gu, G. L. Huang, H. J. Tang, G. P. Zhang, “Enhancement of X-ray lasing due to wave-front correction of line-focusing optics with a large-aperture deformable mirror,” Appl. Phys. Lett. 72, 2785–2787 (1998).
[CrossRef]

English, T.

Fernández Romero, J. M.

J. M. Vadillo, J. M. Fernández Romero, C. Rodriguez, J. J. Laserna, “Depth-resolved analysis by laser-induced breakdown spectrometry at reduced pressure,” Surf. Interface Anal. 26, 995–1000 (1998).
[CrossRef]

Fujikawa, C.

N. Yamaguchi, C. Fujikawa, T. Ohchi, T. Hara, “Dotted-array plasma production by using a line-focusing lens system with segmented prism array for a compact X-ray laser,” Jpn. J. Appl. Phys. Part 1 39, 5268–5272 (2000).
[CrossRef]

Furic, K.

A. Gajovic, M. Stubicar, M. Ivanda, K. Furic, “Raman spectroscopy of ball-milled TiO2,” J. Mol. Struct. 563–564, 315–320 (2001).
[CrossRef]

M. Ivanda, K. Furic, “Line focusing in micro-Raman spectroscopy,” Appl. Opt. 31, 6371–6375 (1992).
[CrossRef] [PubMed]

Gajovic, A.

A. Gajovic, M. Stubicar, M. Ivanda, K. Furic, “Raman spectroscopy of ball-milled TiO2,” J. Mol. Struct. 563–564, 315–320 (2001).
[CrossRef]

García, C. C.

C. C. García, M. Corral, J. M. Vadillo, J. J. Laserna, “Angle-resolved laser-induced breakdown spectrometry for depth profiling of coated materials,” Appl. Spectrosc. 54, 1027–1031 (2000).
[CrossRef]

J. M. Vadillo, C. C. García, S. Palanco, J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308-nm collimated beam”, J. Anal. At. Spectrom. 13, 793–797 (1998).
[CrossRef]

Gu, Y.

G. Y. Yoon, T. Imani, H. Daido, T. Jitsuno, Y. Kato, M. Nakatsuka, S. J. Wang, Z. Q. Lin, Y. Gu, G. L. Huang, H. J. Tang, G. P. Zhang, “Enhancement of X-ray lasing due to wave-front correction of line-focusing optics with a large-aperture deformable mirror,” Appl. Phys. Lett. 72, 2785–2787 (1998).
[CrossRef]

Häkkänen, H.

H. Häkkänen, J. Houni, S. Kaski, J. E. I. Korppi-Tommola, “Analysis of paper by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 737–742 (2001).
[CrossRef]

Hara, T.

N. Yamaguchi, C. Fujikawa, T. Ohchi, T. Hara, “Dotted-array plasma production by using a line-focusing lens system with segmented prism array for a compact X-ray laser,” Jpn. J. Appl. Phys. Part 1 39, 5268–5272 (2000).
[CrossRef]

Hendricks, J. H.

J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, M. I. Aquino, I. Levin, “In situ Raman spectroscopic investigation of chromium surfaces under hydrothermal conditions,” Appl. Surf. Sci. 180, 102–118 (2001).
[CrossRef]

J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, “In situ Raman spectroscopic investigation of zirconium-niobium alloy corrosion under hydrothermal conditions,” J. Nucl. Mater. 298, 239–247 (2001).
[CrossRef]

Hergenröder, R.

V. Margetic, M. Bolshov, A. Stockhaus, K. Niemax, R. Hergenröder, “Depth profiling of multilayer samples using femtosecond laser ablation,” J. Anal. At. Spectrom. 16, 616–621 (2001).
[CrossRef]

Houni, J.

H. Häkkänen, J. Houni, S. Kaski, J. E. I. Korppi-Tommola, “Analysis of paper by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 737–742 (2001).
[CrossRef]

Huang, G. L.

G. Y. Yoon, T. Imani, H. Daido, T. Jitsuno, Y. Kato, M. Nakatsuka, S. J. Wang, Z. Q. Lin, Y. Gu, G. L. Huang, H. J. Tang, G. P. Zhang, “Enhancement of X-ray lasing due to wave-front correction of line-focusing optics with a large-aperture deformable mirror,” Appl. Phys. Lett. 72, 2785–2787 (1998).
[CrossRef]

Hurst, W. S.

J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, “In situ Raman spectroscopic investigation of zirconium-niobium alloy corrosion under hydrothermal conditions,” J. Nucl. Mater. 298, 239–247 (2001).
[CrossRef]

J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, M. I. Aquino, I. Levin, “In situ Raman spectroscopic investigation of chromium surfaces under hydrothermal conditions,” Appl. Surf. Sci. 180, 102–118 (2001).
[CrossRef]

Imani, T.

G. Y. Yoon, T. Imani, H. Daido, T. Jitsuno, Y. Kato, M. Nakatsuka, S. J. Wang, Z. Q. Lin, Y. Gu, G. L. Huang, H. J. Tang, G. P. Zhang, “Enhancement of X-ray lasing due to wave-front correction of line-focusing optics with a large-aperture deformable mirror,” Appl. Phys. Lett. 72, 2785–2787 (1998).
[CrossRef]

Ivanda, M.

A. Gajovic, M. Stubicar, M. Ivanda, K. Furic, “Raman spectroscopy of ball-milled TiO2,” J. Mol. Struct. 563–564, 315–320 (2001).
[CrossRef]

M. Ivanda, K. Furic, “Line focusing in micro-Raman spectroscopy,” Appl. Opt. 31, 6371–6375 (1992).
[CrossRef] [PubMed]

Jitsuno, T.

G. Y. Yoon, T. Imani, H. Daido, T. Jitsuno, Y. Kato, M. Nakatsuka, S. J. Wang, Z. Q. Lin, Y. Gu, G. L. Huang, H. J. Tang, G. P. Zhang, “Enhancement of X-ray lasing due to wave-front correction of line-focusing optics with a large-aperture deformable mirror,” Appl. Phys. Lett. 72, 2785–2787 (1998).
[CrossRef]

Kaski, S.

H. Häkkänen, J. Houni, S. Kaski, J. E. I. Korppi-Tommola, “Analysis of paper by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 737–742 (2001).
[CrossRef]

Kato, Y.

G. Y. Yoon, T. Imani, H. Daido, T. Jitsuno, Y. Kato, M. Nakatsuka, S. J. Wang, Z. Q. Lin, Y. Gu, G. L. Huang, H. J. Tang, G. P. Zhang, “Enhancement of X-ray lasing due to wave-front correction of line-focusing optics with a large-aperture deformable mirror,” Appl. Phys. Lett. 72, 2785–2787 (1998).
[CrossRef]

Kilikoglou, V.

P. Maravelaki-Kalaitzaki, D. Anglos, V. Kilikoglou, V. Zafiropulos, “Compositional characterization of encrustation on marble with laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 887–903 (2001).
[CrossRef]

Korppi-Tommola, J. E. I.

H. Häkkänen, J. Houni, S. Kaski, J. E. I. Korppi-Tommola, “Analysis of paper by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 737–742 (2001).
[CrossRef]

Laserna, J. J.

M. P. Mateo, L. M. Cabalín, J. J. Laserna, “Chemical imaging using microline laser ablation: performance comparison of Gaussian and flat-top lasers,” Appl. Spectrosc. 57, 343–348 (2003).
[CrossRef] [PubMed]

L. M. Cabalín, M. P. Mateo, J. J. Laserna, “Chemical maps of patterned samples by microline-imaging laser-induced plasma spectrometry,” Surf. Interface Anal. 35, 263–267 (2003).
[CrossRef]

M. P. Mateo, L. M. Cabalin, J. M. Baena, J. J. Laserna, “Surface interaction and chemical imaging in plasma spectrometry induced with a line-focused laser beam,” Spectrochim. Acta Part B 57, 601–608 (2002).
[CrossRef]

L. M. Cabalin, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
[CrossRef]

M. P. Mateo, J. M. Vadillo, J. J. Laserna, “Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 16, 1317–1321 (2001).
[CrossRef]

M. P. Mateo, S. Palanco, J. M. Vadillo, J. J. Laserna, “Fast atomic mapping of heterogeneous surfaces using microline-imaging laser-induced breakdown spectrometry,” Appl. Spectrosc. 54, 1429–1434 (2000).
[CrossRef]

C. C. García, M. Corral, J. M. Vadillo, J. J. Laserna, “Angle-resolved laser-induced breakdown spectrometry for depth profiling of coated materials,” Appl. Spectrosc. 54, 1027–1031 (2000).
[CrossRef]

P. Lucena, J. M. Vadillo, J. J. Laserna, “Mapping of platinum group metals in automotive exhaust three-way catalysts using laser-induced breakdown spectrometry,” Anal. Chem. 71, 4385–4391 (1999).
[CrossRef] [PubMed]

J. M. Vadillo, C. C. García, S. Palanco, J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308-nm collimated beam”, J. Anal. At. Spectrom. 13, 793–797 (1998).
[CrossRef]

J. M. Vadillo, J. M. Fernández Romero, C. Rodriguez, J. J. Laserna, “Depth-resolved analysis by laser-induced breakdown spectrometry at reduced pressure,” Surf. Interface Anal. 26, 995–1000 (1998).
[CrossRef]

M. Milán, P. Lucena, L. M. Cabalín, J. J. Laserna, “Depth profiling of phosphorus in photonic-grade silicon using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 52, 444–448 (1998).
[CrossRef]

J. M. Vadillo, J. J. Laserna, “Depth-resolved analysis of multilayered samples by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 12, 859–862 (1997).
[CrossRef]

D. Romero, J. J. Laserna, “Multielemental chemical imaging using laser-induced breakdown spectrometry,” Anal. Chem. 69, 2871–2876 (1997).
[CrossRef] [PubMed]

Levin, I.

J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, M. I. Aquino, I. Levin, “In situ Raman spectroscopic investigation of chromium surfaces under hydrothermal conditions,” Appl. Surf. Sci. 180, 102–118 (2001).
[CrossRef]

Lin, Z. Q.

G. Y. Yoon, T. Imani, H. Daido, T. Jitsuno, Y. Kato, M. Nakatsuka, S. J. Wang, Z. Q. Lin, Y. Gu, G. L. Huang, H. J. Tang, G. P. Zhang, “Enhancement of X-ray lasing due to wave-front correction of line-focusing optics with a large-aperture deformable mirror,” Appl. Phys. Lett. 72, 2785–2787 (1998).
[CrossRef]

Lucena, P.

P. Lucena, J. M. Vadillo, J. J. Laserna, “Mapping of platinum group metals in automotive exhaust three-way catalysts using laser-induced breakdown spectrometry,” Anal. Chem. 71, 4385–4391 (1999).
[CrossRef] [PubMed]

M. Milán, P. Lucena, L. M. Cabalín, J. J. Laserna, “Depth profiling of phosphorus in photonic-grade silicon using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 52, 444–448 (1998).
[CrossRef]

Mao, C. S.

W. N. Chen, S. S. Wang, B. Chen, A. F. Xu, C. S. Mao, “Cylindrical lens array line-focus system for X-ray laser experiments,” Chin. Phys. 12, 403–407 (1992).

Maravelaki-Kalaitzaki, P.

P. Maravelaki-Kalaitzaki, D. Anglos, V. Kilikoglou, V. Zafiropulos, “Compositional characterization of encrustation on marble with laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 887–903 (2001).
[CrossRef]

Margetic, V.

V. Margetic, M. Bolshov, A. Stockhaus, K. Niemax, R. Hergenröder, “Depth profiling of multilayer samples using femtosecond laser ablation,” J. Anal. At. Spectrom. 16, 616–621 (2001).
[CrossRef]

Maslar, J. E.

J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, “In situ Raman spectroscopic investigation of zirconium-niobium alloy corrosion under hydrothermal conditions,” J. Nucl. Mater. 298, 239–247 (2001).
[CrossRef]

J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, M. I. Aquino, I. Levin, “In situ Raman spectroscopic investigation of chromium surfaces under hydrothermal conditions,” Appl. Surf. Sci. 180, 102–118 (2001).
[CrossRef]

Mateo, M. P.

L. M. Cabalín, M. P. Mateo, J. J. Laserna, “Chemical maps of patterned samples by microline-imaging laser-induced plasma spectrometry,” Surf. Interface Anal. 35, 263–267 (2003).
[CrossRef]

M. P. Mateo, L. M. Cabalín, J. J. Laserna, “Chemical imaging using microline laser ablation: performance comparison of Gaussian and flat-top lasers,” Appl. Spectrosc. 57, 343–348 (2003).
[CrossRef] [PubMed]

M. P. Mateo, L. M. Cabalin, J. M. Baena, J. J. Laserna, “Surface interaction and chemical imaging in plasma spectrometry induced with a line-focused laser beam,” Spectrochim. Acta Part B 57, 601–608 (2002).
[CrossRef]

M. P. Mateo, J. M. Vadillo, J. J. Laserna, “Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 16, 1317–1321 (2001).
[CrossRef]

M. P. Mateo, S. Palanco, J. M. Vadillo, J. J. Laserna, “Fast atomic mapping of heterogeneous surfaces using microline-imaging laser-induced breakdown spectrometry,” Appl. Spectrosc. 54, 1429–1434 (2000).
[CrossRef]

McCreery, R. L.

McLeod, C. W.

Milán, M.

Nakamoto, K.

K. Nakamoto, “Resonance Raman spectra and biological significance of high-valent iron (iv, v) porphyrins,” Coord. Chem. Rev. 226, 153–165 (2002).
[CrossRef]

Nakatsuka, M.

G. Y. Yoon, T. Imani, H. Daido, T. Jitsuno, Y. Kato, M. Nakatsuka, S. J. Wang, Z. Q. Lin, Y. Gu, G. L. Huang, H. J. Tang, G. P. Zhang, “Enhancement of X-ray lasing due to wave-front correction of line-focusing optics with a large-aperture deformable mirror,” Appl. Phys. Lett. 72, 2785–2787 (1998).
[CrossRef]

Niemax, K.

V. Margetic, M. Bolshov, A. Stockhaus, K. Niemax, R. Hergenröder, “Depth profiling of multilayer samples using femtosecond laser ablation,” J. Anal. At. Spectrom. 16, 616–621 (2001).
[CrossRef]

Ohchi, T.

N. Yamaguchi, C. Fujikawa, T. Ohchi, T. Hara, “Dotted-array plasma production by using a line-focusing lens system with segmented prism array for a compact X-ray laser,” Jpn. J. Appl. Phys. Part 1 39, 5268–5272 (2000).
[CrossRef]

Palanco, S.

M. P. Mateo, S. Palanco, J. M. Vadillo, J. J. Laserna, “Fast atomic mapping of heterogeneous surfaces using microline-imaging laser-induced breakdown spectrometry,” Appl. Spectrosc. 54, 1429–1434 (2000).
[CrossRef]

J. M. Vadillo, C. C. García, S. Palanco, J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308-nm collimated beam”, J. Anal. At. Spectrom. 13, 793–797 (1998).
[CrossRef]

Ramsey, J.

Ranganathan, S.

Rodriguez, C.

J. M. Vadillo, J. M. Fernández Romero, C. Rodriguez, J. J. Laserna, “Depth-resolved analysis by laser-induced breakdown spectrometry at reduced pressure,” Surf. Interface Anal. 26, 995–1000 (1998).
[CrossRef]

Romero, D.

D. Romero, J. J. Laserna, “Multielemental chemical imaging using laser-induced breakdown spectrometry,” Anal. Chem. 69, 2871–2876 (1997).
[CrossRef] [PubMed]

Sabsabi, M.

L. St-Onge, M. Sabsabi, “Toward quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel,” Spectrochim. Acta Part B 55, 299–308 (2000).
[CrossRef]

Smith, A. T.

Stockhaus, A.

V. Margetic, M. Bolshov, A. Stockhaus, K. Niemax, R. Hergenröder, “Depth profiling of multilayer samples using femtosecond laser ablation,” J. Anal. At. Spectrom. 16, 616–621 (2001).
[CrossRef]

St-Onge, L.

L. St-Onge, “A mathematical framework for modeling the compositional depth profiles obtained by pulsed laser ablation,” J. Anal. At. Spectrom. 17, 1083–1089 (2002).
[CrossRef]

L. St-Onge, M. Sabsabi, “Toward quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel,” Spectrochim. Acta Part B 55, 299–308 (2000).
[CrossRef]

Stubicar, M.

A. Gajovic, M. Stubicar, M. Ivanda, K. Furic, “Raman spectroscopy of ball-milled TiO2,” J. Mol. Struct. 563–564, 315–320 (2001).
[CrossRef]

Tang, H. J.

G. Y. Yoon, T. Imani, H. Daido, T. Jitsuno, Y. Kato, M. Nakatsuka, S. J. Wang, Z. Q. Lin, Y. Gu, G. L. Huang, H. J. Tang, G. P. Zhang, “Enhancement of X-ray lasing due to wave-front correction of line-focusing optics with a large-aperture deformable mirror,” Appl. Phys. Lett. 72, 2785–2787 (1998).
[CrossRef]

Vadillo, J. M.

M. P. Mateo, J. M. Vadillo, J. J. Laserna, “Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 16, 1317–1321 (2001).
[CrossRef]

M. P. Mateo, S. Palanco, J. M. Vadillo, J. J. Laserna, “Fast atomic mapping of heterogeneous surfaces using microline-imaging laser-induced breakdown spectrometry,” Appl. Spectrosc. 54, 1429–1434 (2000).
[CrossRef]

C. C. García, M. Corral, J. M. Vadillo, J. J. Laserna, “Angle-resolved laser-induced breakdown spectrometry for depth profiling of coated materials,” Appl. Spectrosc. 54, 1027–1031 (2000).
[CrossRef]

P. Lucena, J. M. Vadillo, J. J. Laserna, “Mapping of platinum group metals in automotive exhaust three-way catalysts using laser-induced breakdown spectrometry,” Anal. Chem. 71, 4385–4391 (1999).
[CrossRef] [PubMed]

J. M. Vadillo, C. C. García, S. Palanco, J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308-nm collimated beam”, J. Anal. At. Spectrom. 13, 793–797 (1998).
[CrossRef]

J. M. Vadillo, J. M. Fernández Romero, C. Rodriguez, J. J. Laserna, “Depth-resolved analysis by laser-induced breakdown spectrometry at reduced pressure,” Surf. Interface Anal. 26, 995–1000 (1998).
[CrossRef]

J. M. Vadillo, J. J. Laserna, “Depth-resolved analysis of multilayered samples by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 12, 859–862 (1997).
[CrossRef]

Wang, S. J.

G. Y. Yoon, T. Imani, H. Daido, T. Jitsuno, Y. Kato, M. Nakatsuka, S. J. Wang, Z. Q. Lin, Y. Gu, G. L. Huang, H. J. Tang, G. P. Zhang, “Enhancement of X-ray lasing due to wave-front correction of line-focusing optics with a large-aperture deformable mirror,” Appl. Phys. Lett. 72, 2785–2787 (1998).
[CrossRef]

Wang, S. S.

W. N. Chen, S. S. Wang, B. Chen, A. F. Xu, C. S. Mao, “Cylindrical lens array line-focus system for X-ray laser experiments,” Chin. Phys. 12, 403–407 (1992).

Xu, A. F.

W. N. Chen, S. S. Wang, B. Chen, A. F. Xu, C. S. Mao, “Cylindrical lens array line-focus system for X-ray laser experiments,” Chin. Phys. 12, 403–407 (1992).

Yamaguchi, N.

N. Yamaguchi, C. Fujikawa, T. Ohchi, T. Hara, “Dotted-array plasma production by using a line-focusing lens system with segmented prism array for a compact X-ray laser,” Jpn. J. Appl. Phys. Part 1 39, 5268–5272 (2000).
[CrossRef]

Yoon, G. Y.

G. Y. Yoon, T. Imani, H. Daido, T. Jitsuno, Y. Kato, M. Nakatsuka, S. J. Wang, Z. Q. Lin, Y. Gu, G. L. Huang, H. J. Tang, G. P. Zhang, “Enhancement of X-ray lasing due to wave-front correction of line-focusing optics with a large-aperture deformable mirror,” Appl. Phys. Lett. 72, 2785–2787 (1998).
[CrossRef]

Zafiropulos, V.

P. Maravelaki-Kalaitzaki, D. Anglos, V. Kilikoglou, V. Zafiropulos, “Compositional characterization of encrustation on marble with laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 887–903 (2001).
[CrossRef]

Zhang, G. P.

G. Y. Yoon, T. Imani, H. Daido, T. Jitsuno, Y. Kato, M. Nakatsuka, S. J. Wang, Z. Q. Lin, Y. Gu, G. L. Huang, H. J. Tang, G. P. Zhang, “Enhancement of X-ray lasing due to wave-front correction of line-focusing optics with a large-aperture deformable mirror,” Appl. Phys. Lett. 72, 2785–2787 (1998).
[CrossRef]

Zhao, J.

Anal. Chem.

P. Lucena, J. M. Vadillo, J. J. Laserna, “Mapping of platinum group metals in automotive exhaust three-way catalysts using laser-induced breakdown spectrometry,” Anal. Chem. 71, 4385–4391 (1999).
[CrossRef] [PubMed]

L. M. Cabalin, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001).
[CrossRef]

D. Romero, J. J. Laserna, “Multielemental chemical imaging using laser-induced breakdown spectrometry,” Anal. Chem. 69, 2871–2876 (1997).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

G. Y. Yoon, T. Imani, H. Daido, T. Jitsuno, Y. Kato, M. Nakatsuka, S. J. Wang, Z. Q. Lin, Y. Gu, G. L. Huang, H. J. Tang, G. P. Zhang, “Enhancement of X-ray lasing due to wave-front correction of line-focusing optics with a large-aperture deformable mirror,” Appl. Phys. Lett. 72, 2785–2787 (1998).
[CrossRef]

Appl. Spectrosc.

Appl. Surf. Sci.

J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, M. I. Aquino, I. Levin, “In situ Raman spectroscopic investigation of chromium surfaces under hydrothermal conditions,” Appl. Surf. Sci. 180, 102–118 (2001).
[CrossRef]

Chin. Phys.

W. N. Chen, S. S. Wang, B. Chen, A. F. Xu, C. S. Mao, “Cylindrical lens array line-focus system for X-ray laser experiments,” Chin. Phys. 12, 403–407 (1992).

Coord. Chem. Rev.

K. Nakamoto, “Resonance Raman spectra and biological significance of high-valent iron (iv, v) porphyrins,” Coord. Chem. Rev. 226, 153–165 (2002).
[CrossRef]

J. Anal. At. Spectrom.

M. P. Mateo, J. M. Vadillo, J. J. Laserna, “Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 16, 1317–1321 (2001).
[CrossRef]

L. St-Onge, “A mathematical framework for modeling the compositional depth profiles obtained by pulsed laser ablation,” J. Anal. At. Spectrom. 17, 1083–1089 (2002).
[CrossRef]

V. Margetic, M. Bolshov, A. Stockhaus, K. Niemax, R. Hergenröder, “Depth profiling of multilayer samples using femtosecond laser ablation,” J. Anal. At. Spectrom. 16, 616–621 (2001).
[CrossRef]

J. M. Vadillo, J. J. Laserna, “Depth-resolved analysis of multilayered samples by laser-induced breakdown spectrometry,” J. Anal. At. Spectrom. 12, 859–862 (1997).
[CrossRef]

J. M. Vadillo, C. C. García, S. Palanco, J. J. Laserna, “Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308-nm collimated beam”, J. Anal. At. Spectrom. 13, 793–797 (1998).
[CrossRef]

J. Mol. Struct.

A. Gajovic, M. Stubicar, M. Ivanda, K. Furic, “Raman spectroscopy of ball-milled TiO2,” J. Mol. Struct. 563–564, 315–320 (2001).
[CrossRef]

J. Nucl. Mater.

J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, “In situ Raman spectroscopic investigation of zirconium-niobium alloy corrosion under hydrothermal conditions,” J. Nucl. Mater. 298, 239–247 (2001).
[CrossRef]

Jpn. J. Appl. Phys. Part 1

N. Yamaguchi, C. Fujikawa, T. Ohchi, T. Hara, “Dotted-array plasma production by using a line-focusing lens system with segmented prism array for a compact X-ray laser,” Jpn. J. Appl. Phys. Part 1 39, 5268–5272 (2000).
[CrossRef]

Spectrochim. Acta Part B

H. Häkkänen, J. Houni, S. Kaski, J. E. I. Korppi-Tommola, “Analysis of paper by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 737–742 (2001).
[CrossRef]

P. Maravelaki-Kalaitzaki, D. Anglos, V. Kilikoglou, V. Zafiropulos, “Compositional characterization of encrustation on marble with laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 887–903 (2001).
[CrossRef]

L. St-Onge, M. Sabsabi, “Toward quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel,” Spectrochim. Acta Part B 55, 299–308 (2000).
[CrossRef]

M. P. Mateo, L. M. Cabalin, J. M. Baena, J. J. Laserna, “Surface interaction and chemical imaging in plasma spectrometry induced with a line-focused laser beam,” Spectrochim. Acta Part B 57, 601–608 (2002).
[CrossRef]

Surf. Interface Anal.

L. M. Cabalín, M. P. Mateo, J. J. Laserna, “Chemical maps of patterned samples by microline-imaging laser-induced plasma spectrometry,” Surf. Interface Anal. 35, 263–267 (2003).
[CrossRef]

J. M. Vadillo, J. M. Fernández Romero, C. Rodriguez, J. J. Laserna, “Depth-resolved analysis by laser-induced breakdown spectrometry at reduced pressure,” Surf. Interface Anal. 26, 995–1000 (1998).
[CrossRef]

Other

R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, New York, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

LIPS craters obtained with both optical configurations: A, point mode; B, microline mode. Details about the dimensions of both craters are summarized in Table 1.

Fig. 2
Fig. 2

Laser-induced plasma spectra of a copper foil obtained with microline- and point-focusing methods. Experimental conditions: 2400-groove/mm grating centered at 332 nm; delay time, 300 ns; acquisition time, 1000 ns. The range between 334 and 338 nm is also shown in detail. Laser pulse energies: 45 mJ for microline focus, 3.2 mJ for point analysis.

Fig. 3
Fig. 3

Comparison of LIP spectra from the 1st, 3rd, 10th, and 20th successive laser pulses for point and microline analyses of a 150-nm-thick TiN coating on a silicon substrate. Experimental conditions: 2400-groove/mm grating centered at 290 nm. Timing conditions: 700 ns (delay time), 1000 ns (acquisition time).

Fig. 4
Fig. 4

Variation of the LIP net intensity ratios of Si i 288.158- and Ti i 291.208-nm emission signals with a number of successive laser shots performed in the sample with a TiN coating on a silicon substrate by point and microline analyses.

Fig. 5
Fig. 5

Comparison of depth profiles corresponding to normalized LIPS intensities of Cr i 540.979, Ni i 547.691, and Cu i 521.820 nm obtained by microline and point analyses of the CrNiCu-brass sample. Same experimental conditions as in Fig. 3. The abscissa axes in both plots are on a different scale.

Tables (1)

Tables Icon

Table 1 Comparison of Ablation Features and Spectral Signal Characteristics of Point and Microline Approaches

Metrics