Abstract

Stark-broadened emission profiles of the Balmer series Hβ lines are measured subsequent to nanosecond laser-induced optical breakdown in gaseous hydrogen. Electron number densities are found from time-resolved spectra from Hβ emissions to be in the range 1015–1018 cm-3. These results are compared with Hα measurements for which number densities as high as 1019 cm-3 are determined from Stark widths and Stark shifts. Good agreement is reported for number densities inferred from Hα and Hβ emissions, down to an electron number density 3 × 1016 cm-3, by accurate treatment of ion dynamics in the theory.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Parigger, J. W. L. Lewis, D. H. Plemmons, “Electron number density and temperature measurement in a laser-induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249–255 (1995).
  2. C. Parigger, D. H. Plemmons, J. W. L. Lewis, “Spatially and temporally resolved electron number density measurements in a decaying laser-induced hydrogen plasma using hydrogen-alpha line profiles,” Appl. Opt. 34, 3325–3330 (1995).
    [CrossRef] [PubMed]
  3. C. G. Parigger, D. H. Plemmons, “Laser-induced breakdown spectroscopy: Balmer series H-beta measurements,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 112–113.
  4. H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974).
  5. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge U. Press, Cambridge, 1997).
    [CrossRef]
  6. Ya. Ispolatov, E. Oks, “A convergent theory of Stark broadening of hydrogen lines in dense plasmas,” J. Quant. Spectrosc. Rad. Transfer 51, 129–138 (1994).
    [CrossRef]
  7. J. E. Touma, E. Oks, S. Alexiou, A. Derevianko, “Review of the advanced generalized theory for Stark broadening of hydrogen lines in plasmas with tables,” J. Quant. Spectrosc. Rad. Transfer 53, 543–571 (2000).
    [CrossRef]
  8. E. Oks, “A new spectroscopic effect resulting in a narrowing of hydrogen lines in dense plasmas,” J. Quant. Spectrosc. Rad. Transfer 65, 405–414 (2000).
    [CrossRef]
  9. E. Oks, “Advance in diagnostics for high-temperature plasmas based on the analytical result for the ion dynamical broadening of hydrogen spectral lines,” Phys. Rev. E 60, R2480–R2483 (1999).
    [CrossRef]
  10. E. Oks, “Comparison of the latest experimental H-alpha results at the Bochum’s gas-liner pinch with the upgraded advanced generalized theory,” in Spectral Line Shapes, J. Seidel, ed., AIP Conf. Proc.559, 54–57 (1997).
  11. S. A. Flih, E. Oks, Y. Vitel, “Comparison of the Stark widths and shifts of the H-alpha line measured in a flash tube plasma with theoretical results,” J. Phys. B 36, 283–296 (2003).
    [CrossRef]
  12. St. Böddeker, S. Günter, A. Könies, L. Hitzschke, H.-J. Kunze, “Shift and width of the Hα line of hydrogen in dense plasmas,” Phys. Rev. E 47, 2785–2791 (1993).
    [CrossRef]
  13. E. Oks, “Reduction of spectral line shifts due to the acceleration of electrons by the ion field in plasmas,” J. Phys. B 35, 2251–2260 (2002).
    [CrossRef]
  14. E. Oks, “New type of shift of hydrogen and hydrogenlike spectral lines,” J. Quant. Spectrosc. Rad. Transfer 58, 821–826 (1997).
    [CrossRef]
  15. A. Escarguel, E. Oks, J. Richou, D. Volodko, “Highly nonlinear, sign-varying shift of hydrogen spectral lines in dense plasmas,” Phys. Rev. E 62, 2667–2671 (2000).
    [CrossRef]
  16. S. Büscher, Th. Wrubel, S. Ferri, H.-J. Kunze, “The Stark width and shift of the hydrogen Hα line,” J. Phys. B 35, 2889–2897 (2002).
    [CrossRef]
  17. J. Seidel, “Effects of ion motion on hydrogen stark profiles,” Z. Naturforsch. Teil A 32, 1207–1214 (1977).
  18. L. P. Kudrin, G. V. Sholin, “Asymmetry of spectral lines of hydrogen in plasma,” Sov. Phys. Dokl. 7, 1015–1017 (1963).
  19. V. Helbig, H.-P. Nick, “Investigation of the Stark broadening of Balmer beta,” J. Phys. B 14, 3573–3583 (1981).
    [CrossRef]
  20. J. Uhlenbusch, W. Viöl, “Hβ-line profile measurements in optical discharges,” J. Quant. Spectrosc. Rad. Transfer 44, 47–56 (1990).
    [CrossRef]
  21. A. Escarguel, B. Ferhat, A. Lesage, J. Richou, “A single laser spark in aqueous medium,” J. Quant. Spectrosc. Rad. Transfer 64, 353–361 (2000).
    [CrossRef]
  22. H. R. Griem, “Shifts of hydrogen lines from electron collisions in dense plasmas,” Phys. Rev. A 28, 1596–1601 (1983).
    [CrossRef]
  23. H. R. Griem, “Shifts of hydrogen and ionized-helium lines from Δn = 0 interactions with electrons in dense plasmas,” Phys. Rev. A 38, 2943–2952 (1988).
    [CrossRef] [PubMed]
  24. P. Kepple, H. R. Griem, “Improved Stark profile calculations for the hydrogen lines H alpha, H beta, H gamma, and H delta,” Phys. Rev. 173, 317–325 (1968).
    [CrossRef]

2003 (1)

S. A. Flih, E. Oks, Y. Vitel, “Comparison of the Stark widths and shifts of the H-alpha line measured in a flash tube plasma with theoretical results,” J. Phys. B 36, 283–296 (2003).
[CrossRef]

2002 (2)

E. Oks, “Reduction of spectral line shifts due to the acceleration of electrons by the ion field in plasmas,” J. Phys. B 35, 2251–2260 (2002).
[CrossRef]

S. Büscher, Th. Wrubel, S. Ferri, H.-J. Kunze, “The Stark width and shift of the hydrogen Hα line,” J. Phys. B 35, 2889–2897 (2002).
[CrossRef]

2000 (4)

A. Escarguel, E. Oks, J. Richou, D. Volodko, “Highly nonlinear, sign-varying shift of hydrogen spectral lines in dense plasmas,” Phys. Rev. E 62, 2667–2671 (2000).
[CrossRef]

A. Escarguel, B. Ferhat, A. Lesage, J. Richou, “A single laser spark in aqueous medium,” J. Quant. Spectrosc. Rad. Transfer 64, 353–361 (2000).
[CrossRef]

J. E. Touma, E. Oks, S. Alexiou, A. Derevianko, “Review of the advanced generalized theory for Stark broadening of hydrogen lines in plasmas with tables,” J. Quant. Spectrosc. Rad. Transfer 53, 543–571 (2000).
[CrossRef]

E. Oks, “A new spectroscopic effect resulting in a narrowing of hydrogen lines in dense plasmas,” J. Quant. Spectrosc. Rad. Transfer 65, 405–414 (2000).
[CrossRef]

1999 (1)

E. Oks, “Advance in diagnostics for high-temperature plasmas based on the analytical result for the ion dynamical broadening of hydrogen spectral lines,” Phys. Rev. E 60, R2480–R2483 (1999).
[CrossRef]

1997 (1)

E. Oks, “New type of shift of hydrogen and hydrogenlike spectral lines,” J. Quant. Spectrosc. Rad. Transfer 58, 821–826 (1997).
[CrossRef]

1995 (2)

C. Parigger, J. W. L. Lewis, D. H. Plemmons, “Electron number density and temperature measurement in a laser-induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249–255 (1995).

C. Parigger, D. H. Plemmons, J. W. L. Lewis, “Spatially and temporally resolved electron number density measurements in a decaying laser-induced hydrogen plasma using hydrogen-alpha line profiles,” Appl. Opt. 34, 3325–3330 (1995).
[CrossRef] [PubMed]

1994 (1)

Ya. Ispolatov, E. Oks, “A convergent theory of Stark broadening of hydrogen lines in dense plasmas,” J. Quant. Spectrosc. Rad. Transfer 51, 129–138 (1994).
[CrossRef]

1993 (1)

St. Böddeker, S. Günter, A. Könies, L. Hitzschke, H.-J. Kunze, “Shift and width of the Hα line of hydrogen in dense plasmas,” Phys. Rev. E 47, 2785–2791 (1993).
[CrossRef]

1990 (1)

J. Uhlenbusch, W. Viöl, “Hβ-line profile measurements in optical discharges,” J. Quant. Spectrosc. Rad. Transfer 44, 47–56 (1990).
[CrossRef]

1988 (1)

H. R. Griem, “Shifts of hydrogen and ionized-helium lines from Δn = 0 interactions with electrons in dense plasmas,” Phys. Rev. A 38, 2943–2952 (1988).
[CrossRef] [PubMed]

1983 (1)

H. R. Griem, “Shifts of hydrogen lines from electron collisions in dense plasmas,” Phys. Rev. A 28, 1596–1601 (1983).
[CrossRef]

1981 (1)

V. Helbig, H.-P. Nick, “Investigation of the Stark broadening of Balmer beta,” J. Phys. B 14, 3573–3583 (1981).
[CrossRef]

1977 (1)

J. Seidel, “Effects of ion motion on hydrogen stark profiles,” Z. Naturforsch. Teil A 32, 1207–1214 (1977).

1968 (1)

P. Kepple, H. R. Griem, “Improved Stark profile calculations for the hydrogen lines H alpha, H beta, H gamma, and H delta,” Phys. Rev. 173, 317–325 (1968).
[CrossRef]

1963 (1)

L. P. Kudrin, G. V. Sholin, “Asymmetry of spectral lines of hydrogen in plasma,” Sov. Phys. Dokl. 7, 1015–1017 (1963).

Alexiou, S.

J. E. Touma, E. Oks, S. Alexiou, A. Derevianko, “Review of the advanced generalized theory for Stark broadening of hydrogen lines in plasmas with tables,” J. Quant. Spectrosc. Rad. Transfer 53, 543–571 (2000).
[CrossRef]

Böddeker, St.

St. Böddeker, S. Günter, A. Könies, L. Hitzschke, H.-J. Kunze, “Shift and width of the Hα line of hydrogen in dense plasmas,” Phys. Rev. E 47, 2785–2791 (1993).
[CrossRef]

Büscher, S.

S. Büscher, Th. Wrubel, S. Ferri, H.-J. Kunze, “The Stark width and shift of the hydrogen Hα line,” J. Phys. B 35, 2889–2897 (2002).
[CrossRef]

Derevianko, A.

J. E. Touma, E. Oks, S. Alexiou, A. Derevianko, “Review of the advanced generalized theory for Stark broadening of hydrogen lines in plasmas with tables,” J. Quant. Spectrosc. Rad. Transfer 53, 543–571 (2000).
[CrossRef]

Escarguel, A.

A. Escarguel, E. Oks, J. Richou, D. Volodko, “Highly nonlinear, sign-varying shift of hydrogen spectral lines in dense plasmas,” Phys. Rev. E 62, 2667–2671 (2000).
[CrossRef]

A. Escarguel, B. Ferhat, A. Lesage, J. Richou, “A single laser spark in aqueous medium,” J. Quant. Spectrosc. Rad. Transfer 64, 353–361 (2000).
[CrossRef]

Ferhat, B.

A. Escarguel, B. Ferhat, A. Lesage, J. Richou, “A single laser spark in aqueous medium,” J. Quant. Spectrosc. Rad. Transfer 64, 353–361 (2000).
[CrossRef]

Ferri, S.

S. Büscher, Th. Wrubel, S. Ferri, H.-J. Kunze, “The Stark width and shift of the hydrogen Hα line,” J. Phys. B 35, 2889–2897 (2002).
[CrossRef]

Flih, S. A.

S. A. Flih, E. Oks, Y. Vitel, “Comparison of the Stark widths and shifts of the H-alpha line measured in a flash tube plasma with theoretical results,” J. Phys. B 36, 283–296 (2003).
[CrossRef]

Griem, H. R.

H. R. Griem, “Shifts of hydrogen and ionized-helium lines from Δn = 0 interactions with electrons in dense plasmas,” Phys. Rev. A 38, 2943–2952 (1988).
[CrossRef] [PubMed]

H. R. Griem, “Shifts of hydrogen lines from electron collisions in dense plasmas,” Phys. Rev. A 28, 1596–1601 (1983).
[CrossRef]

P. Kepple, H. R. Griem, “Improved Stark profile calculations for the hydrogen lines H alpha, H beta, H gamma, and H delta,” Phys. Rev. 173, 317–325 (1968).
[CrossRef]

H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974).

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge U. Press, Cambridge, 1997).
[CrossRef]

Günter, S.

St. Böddeker, S. Günter, A. Könies, L. Hitzschke, H.-J. Kunze, “Shift and width of the Hα line of hydrogen in dense plasmas,” Phys. Rev. E 47, 2785–2791 (1993).
[CrossRef]

Helbig, V.

V. Helbig, H.-P. Nick, “Investigation of the Stark broadening of Balmer beta,” J. Phys. B 14, 3573–3583 (1981).
[CrossRef]

Hitzschke, L.

St. Böddeker, S. Günter, A. Könies, L. Hitzschke, H.-J. Kunze, “Shift and width of the Hα line of hydrogen in dense plasmas,” Phys. Rev. E 47, 2785–2791 (1993).
[CrossRef]

Ispolatov, Ya.

Ya. Ispolatov, E. Oks, “A convergent theory of Stark broadening of hydrogen lines in dense plasmas,” J. Quant. Spectrosc. Rad. Transfer 51, 129–138 (1994).
[CrossRef]

Kepple, P.

P. Kepple, H. R. Griem, “Improved Stark profile calculations for the hydrogen lines H alpha, H beta, H gamma, and H delta,” Phys. Rev. 173, 317–325 (1968).
[CrossRef]

Könies, A.

St. Böddeker, S. Günter, A. Könies, L. Hitzschke, H.-J. Kunze, “Shift and width of the Hα line of hydrogen in dense plasmas,” Phys. Rev. E 47, 2785–2791 (1993).
[CrossRef]

Kudrin, L. P.

L. P. Kudrin, G. V. Sholin, “Asymmetry of spectral lines of hydrogen in plasma,” Sov. Phys. Dokl. 7, 1015–1017 (1963).

Kunze, H.-J.

S. Büscher, Th. Wrubel, S. Ferri, H.-J. Kunze, “The Stark width and shift of the hydrogen Hα line,” J. Phys. B 35, 2889–2897 (2002).
[CrossRef]

St. Böddeker, S. Günter, A. Könies, L. Hitzschke, H.-J. Kunze, “Shift and width of the Hα line of hydrogen in dense plasmas,” Phys. Rev. E 47, 2785–2791 (1993).
[CrossRef]

Lesage, A.

A. Escarguel, B. Ferhat, A. Lesage, J. Richou, “A single laser spark in aqueous medium,” J. Quant. Spectrosc. Rad. Transfer 64, 353–361 (2000).
[CrossRef]

Lewis, J. W. L.

C. Parigger, J. W. L. Lewis, D. H. Plemmons, “Electron number density and temperature measurement in a laser-induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249–255 (1995).

C. Parigger, D. H. Plemmons, J. W. L. Lewis, “Spatially and temporally resolved electron number density measurements in a decaying laser-induced hydrogen plasma using hydrogen-alpha line profiles,” Appl. Opt. 34, 3325–3330 (1995).
[CrossRef] [PubMed]

Nick, H.-P.

V. Helbig, H.-P. Nick, “Investigation of the Stark broadening of Balmer beta,” J. Phys. B 14, 3573–3583 (1981).
[CrossRef]

Oks, E.

S. A. Flih, E. Oks, Y. Vitel, “Comparison of the Stark widths and shifts of the H-alpha line measured in a flash tube plasma with theoretical results,” J. Phys. B 36, 283–296 (2003).
[CrossRef]

E. Oks, “Reduction of spectral line shifts due to the acceleration of electrons by the ion field in plasmas,” J. Phys. B 35, 2251–2260 (2002).
[CrossRef]

A. Escarguel, E. Oks, J. Richou, D. Volodko, “Highly nonlinear, sign-varying shift of hydrogen spectral lines in dense plasmas,” Phys. Rev. E 62, 2667–2671 (2000).
[CrossRef]

J. E. Touma, E. Oks, S. Alexiou, A. Derevianko, “Review of the advanced generalized theory for Stark broadening of hydrogen lines in plasmas with tables,” J. Quant. Spectrosc. Rad. Transfer 53, 543–571 (2000).
[CrossRef]

E. Oks, “A new spectroscopic effect resulting in a narrowing of hydrogen lines in dense plasmas,” J. Quant. Spectrosc. Rad. Transfer 65, 405–414 (2000).
[CrossRef]

E. Oks, “Advance in diagnostics for high-temperature plasmas based on the analytical result for the ion dynamical broadening of hydrogen spectral lines,” Phys. Rev. E 60, R2480–R2483 (1999).
[CrossRef]

E. Oks, “New type of shift of hydrogen and hydrogenlike spectral lines,” J. Quant. Spectrosc. Rad. Transfer 58, 821–826 (1997).
[CrossRef]

Ya. Ispolatov, E. Oks, “A convergent theory of Stark broadening of hydrogen lines in dense plasmas,” J. Quant. Spectrosc. Rad. Transfer 51, 129–138 (1994).
[CrossRef]

E. Oks, “Comparison of the latest experimental H-alpha results at the Bochum’s gas-liner pinch with the upgraded advanced generalized theory,” in Spectral Line Shapes, J. Seidel, ed., AIP Conf. Proc.559, 54–57 (1997).

Parigger, C.

C. Parigger, J. W. L. Lewis, D. H. Plemmons, “Electron number density and temperature measurement in a laser-induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249–255 (1995).

C. Parigger, D. H. Plemmons, J. W. L. Lewis, “Spatially and temporally resolved electron number density measurements in a decaying laser-induced hydrogen plasma using hydrogen-alpha line profiles,” Appl. Opt. 34, 3325–3330 (1995).
[CrossRef] [PubMed]

Parigger, C. G.

C. G. Parigger, D. H. Plemmons, “Laser-induced breakdown spectroscopy: Balmer series H-beta measurements,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 112–113.

Plemmons, D. H.

C. Parigger, D. H. Plemmons, J. W. L. Lewis, “Spatially and temporally resolved electron number density measurements in a decaying laser-induced hydrogen plasma using hydrogen-alpha line profiles,” Appl. Opt. 34, 3325–3330 (1995).
[CrossRef] [PubMed]

C. Parigger, J. W. L. Lewis, D. H. Plemmons, “Electron number density and temperature measurement in a laser-induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249–255 (1995).

C. G. Parigger, D. H. Plemmons, “Laser-induced breakdown spectroscopy: Balmer series H-beta measurements,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 112–113.

Richou, J.

A. Escarguel, E. Oks, J. Richou, D. Volodko, “Highly nonlinear, sign-varying shift of hydrogen spectral lines in dense plasmas,” Phys. Rev. E 62, 2667–2671 (2000).
[CrossRef]

A. Escarguel, B. Ferhat, A. Lesage, J. Richou, “A single laser spark in aqueous medium,” J. Quant. Spectrosc. Rad. Transfer 64, 353–361 (2000).
[CrossRef]

Seidel, J.

J. Seidel, “Effects of ion motion on hydrogen stark profiles,” Z. Naturforsch. Teil A 32, 1207–1214 (1977).

Sholin, G. V.

L. P. Kudrin, G. V. Sholin, “Asymmetry of spectral lines of hydrogen in plasma,” Sov. Phys. Dokl. 7, 1015–1017 (1963).

Touma, J. E.

J. E. Touma, E. Oks, S. Alexiou, A. Derevianko, “Review of the advanced generalized theory for Stark broadening of hydrogen lines in plasmas with tables,” J. Quant. Spectrosc. Rad. Transfer 53, 543–571 (2000).
[CrossRef]

Uhlenbusch, J.

J. Uhlenbusch, W. Viöl, “Hβ-line profile measurements in optical discharges,” J. Quant. Spectrosc. Rad. Transfer 44, 47–56 (1990).
[CrossRef]

Viöl, W.

J. Uhlenbusch, W. Viöl, “Hβ-line profile measurements in optical discharges,” J. Quant. Spectrosc. Rad. Transfer 44, 47–56 (1990).
[CrossRef]

Vitel, Y.

S. A. Flih, E. Oks, Y. Vitel, “Comparison of the Stark widths and shifts of the H-alpha line measured in a flash tube plasma with theoretical results,” J. Phys. B 36, 283–296 (2003).
[CrossRef]

Volodko, D.

A. Escarguel, E. Oks, J. Richou, D. Volodko, “Highly nonlinear, sign-varying shift of hydrogen spectral lines in dense plasmas,” Phys. Rev. E 62, 2667–2671 (2000).
[CrossRef]

Wrubel, Th.

S. Büscher, Th. Wrubel, S. Ferri, H.-J. Kunze, “The Stark width and shift of the hydrogen Hα line,” J. Phys. B 35, 2889–2897 (2002).
[CrossRef]

Appl. Opt. (1)

J. Phys. B (4)

S. A. Flih, E. Oks, Y. Vitel, “Comparison of the Stark widths and shifts of the H-alpha line measured in a flash tube plasma with theoretical results,” J. Phys. B 36, 283–296 (2003).
[CrossRef]

E. Oks, “Reduction of spectral line shifts due to the acceleration of electrons by the ion field in plasmas,” J. Phys. B 35, 2251–2260 (2002).
[CrossRef]

S. Büscher, Th. Wrubel, S. Ferri, H.-J. Kunze, “The Stark width and shift of the hydrogen Hα line,” J. Phys. B 35, 2889–2897 (2002).
[CrossRef]

V. Helbig, H.-P. Nick, “Investigation of the Stark broadening of Balmer beta,” J. Phys. B 14, 3573–3583 (1981).
[CrossRef]

J. Quant. Spectrosc. Rad. Transfer (6)

J. Uhlenbusch, W. Viöl, “Hβ-line profile measurements in optical discharges,” J. Quant. Spectrosc. Rad. Transfer 44, 47–56 (1990).
[CrossRef]

A. Escarguel, B. Ferhat, A. Lesage, J. Richou, “A single laser spark in aqueous medium,” J. Quant. Spectrosc. Rad. Transfer 64, 353–361 (2000).
[CrossRef]

E. Oks, “New type of shift of hydrogen and hydrogenlike spectral lines,” J. Quant. Spectrosc. Rad. Transfer 58, 821–826 (1997).
[CrossRef]

Ya. Ispolatov, E. Oks, “A convergent theory of Stark broadening of hydrogen lines in dense plasmas,” J. Quant. Spectrosc. Rad. Transfer 51, 129–138 (1994).
[CrossRef]

J. E. Touma, E. Oks, S. Alexiou, A. Derevianko, “Review of the advanced generalized theory for Stark broadening of hydrogen lines in plasmas with tables,” J. Quant. Spectrosc. Rad. Transfer 53, 543–571 (2000).
[CrossRef]

E. Oks, “A new spectroscopic effect resulting in a narrowing of hydrogen lines in dense plasmas,” J. Quant. Spectrosc. Rad. Transfer 65, 405–414 (2000).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

C. Parigger, J. W. L. Lewis, D. H. Plemmons, “Electron number density and temperature measurement in a laser-induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249–255 (1995).

Phys. Rev. (1)

P. Kepple, H. R. Griem, “Improved Stark profile calculations for the hydrogen lines H alpha, H beta, H gamma, and H delta,” Phys. Rev. 173, 317–325 (1968).
[CrossRef]

Phys. Rev. A (2)

H. R. Griem, “Shifts of hydrogen lines from electron collisions in dense plasmas,” Phys. Rev. A 28, 1596–1601 (1983).
[CrossRef]

H. R. Griem, “Shifts of hydrogen and ionized-helium lines from Δn = 0 interactions with electrons in dense plasmas,” Phys. Rev. A 38, 2943–2952 (1988).
[CrossRef] [PubMed]

Phys. Rev. E (3)

A. Escarguel, E. Oks, J. Richou, D. Volodko, “Highly nonlinear, sign-varying shift of hydrogen spectral lines in dense plasmas,” Phys. Rev. E 62, 2667–2671 (2000).
[CrossRef]

St. Böddeker, S. Günter, A. Könies, L. Hitzschke, H.-J. Kunze, “Shift and width of the Hα line of hydrogen in dense plasmas,” Phys. Rev. E 47, 2785–2791 (1993).
[CrossRef]

E. Oks, “Advance in diagnostics for high-temperature plasmas based on the analytical result for the ion dynamical broadening of hydrogen spectral lines,” Phys. Rev. E 60, R2480–R2483 (1999).
[CrossRef]

Sov. Phys. Dokl. (1)

L. P. Kudrin, G. V. Sholin, “Asymmetry of spectral lines of hydrogen in plasma,” Sov. Phys. Dokl. 7, 1015–1017 (1963).

Z. Naturforsch. Teil A (1)

J. Seidel, “Effects of ion motion on hydrogen stark profiles,” Z. Naturforsch. Teil A 32, 1207–1214 (1977).

Other (4)

E. Oks, “Comparison of the latest experimental H-alpha results at the Bochum’s gas-liner pinch with the upgraded advanced generalized theory,” in Spectral Line Shapes, J. Seidel, ed., AIP Conf. Proc.559, 54–57 (1997).

C. G. Parigger, D. H. Plemmons, “Laser-induced breakdown spectroscopy: Balmer series H-beta measurements,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 112–113.

H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974).

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge U. Press, Cambridge, 1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measured Balmer series Hβ emission lines for time delays of (a) Δt = 0.1 µs, (b) Δt = 0.2 µs, (c) Δt = 0.3 µs, and (d) Δt = 0.4 µs.

Fig. 2
Fig. 2

Measured Balmer series Hβ emission lines for time delays of (a) Δt = 0.5 µs, (b) Δt = 0.6 µs, (c) Δt = 1.0 µs, and (d) Δt = 2.0 µs.

Fig. 3
Fig. 3

Comparison of electron number densities obtained from Hα and Hβ line profiles, following laser-induced optical breakdown in a cell containing H2 gas at a pressure of 810 Torr. Number densities inferred from using Griem’s theory for Hα and Hβ are shown. The Nd:YAG laser radiation was focused to typically 1400 GW/cm2, or more than ten times larger than the nanosecond breakdown threshold of hydrogen gas for 1064-nm radiation.

Fig. 4
Fig. 4

Early plasma decay electron number densities inferred from Hα and Hβ linewidths and from Hα shifts. The (N e )Hα error bars show uncertainties that are due to uncertainty in temperature; the (N e )Hβ error bars illustrate the errors in determining the Hβ FWHM early in the plasma decay.

Tables (4)

Tables Icon

Table 1 Hβ Peak Separation Correlation with FWHM Following Laser-Induced Optical Breakdown in a Pressure Cell Filled with Gaseous Hydrogen at a Pressure of 810 Torra

Tables Icon

Table 2 Hβ Widths and Inferred Electron Number Densities (Ne)Hβ

Tables Icon

Table 3 Hα Widths and Inferred Electron Number Densities (Ne ) H α

Tables Icon

Table 4 Hα Redshifts and Inferred Electron Number Densities (Ne)shift

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

λR-λB=aΔλ1/2.
αβ|Φ|αβ=-4π2Ne3me2a020dvWMv1v×αxααxαα+yααyαα+zααzαα0dZαZα C±Zα+βxββxββ+yββyββ+zββzββ0dZβZβ C±Zβ.
C±Z=-12-+dx1-x1dx21+x1x21+x121+x223/2×expiZx1±x2.
Zα,β=3nα,βFρ/2meev,
IΔω=-1πReσααββ β|dσ|α×α|dσ|βαβ|Ĝ-1|αβF.
αβ|Φad|αβ=-4π2Ne3me2a020dvWMv1vzααzαα+zββzββIuαβ.
Iu=u2/2-u2 cos1/u+2u3-usin1/u+Ci1/u/6; uαβ=mevρD/3nαqα-nβqβ,
αβ|Φna|αβ=-4π2Ne3me2a020dvWMv1v×αxααxαα+yααyαα0dZαZα×C±χα, Yα, Zα+βxββxββ+yββyββ0dZβZβ C±χβ, Yβ, Zβ.
C±χ, Y, Z=-34-dx1-x1dx2wx1wx23×expiZx1±x2j0+2x1x2-1j1+1-x1x2σ12-x1+x2σ1σ2j22, σ12+σ22, σ1Y/Zx1wx1±x2wx2+1±1-2χ, σ2Y/Zwx1±wx2, wx1/1+x2.
j0=sin , j1=sin - cos 2, j2=3 sin -3 cos -2 sin 3.
χα(nαqαδαα-nβqβδββ/nαqα-qα, χβ(nαqαδαα-nβqβδββ/nβqβ-qβ.
Yk=3nk2Zkmev2Fe, k=α, β.

Metrics