Abstract

Laser-induced breakdown spectroscopy (LIBS) is widely dependent on the conditions of its implementation in terms of laser characteristics (wavelength, energy, and pulse duration), focusing conditions, and surrounding gas. In this study two wavelengths, 1.06 and 2.94 µm, obtained with Nd:YAG and Er:YAG lasers, respectively, were used for LIBS analysis of aluminum alloy samples in two conditions of surrounding gas. The influence of the laser wavelength on the laser-produced plasma was studied for the same irradiance by use of air or helium as a buffer gas at atmospheric pressure. We used measurements of light emission to determine the temporally resolved space-averaged electron density and plasma temperature in the laser-induced plasma. We also examined the effect of laser wavelength in two different ambient conditions in terms of spectrochemical analysis by LIBS. The results indicate that the effect of the surrounding gas depends on the laser wavelength and the use of an Er:YAG laser could increase linearity by limiting the leveling in the calibration curve for some elements in aluminum alloys. There is also a significant difference between the plasma induced by the two lasers in terms of electron density and plasma temperature.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Brech, L. Cross, “Optical micromission stimulated by a ruby maser,” Appl. Spectrosc. 16, 59 (1962).
  2. L. Moenke-Blankenburg, Laser Micro-Analysis (Wiley Interscience, New York, 1989).
  3. L. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta Part B 57, 1109–1113 (2002).
    [CrossRef]
  4. W. Sdorra, J. Brust, K. Niemax, “Basic investigations for laser microanalysis: VI. The dependence on the laser wavelength in laser ablation,” Mikrochim. Acta. 108, 1–10 (1992).
    [CrossRef]
  5. C. W. Ng, W. F. Ho, N. H. Cheung, “Spectrochemical analysis of liquids using laser-induced plasma emissions: effects of laser wavelength on plasma properties,” Appl. Spectrosc. 51, 976–983 (1997).
    [CrossRef]
  6. M. Martin, M. D. Cheng, “Detection of chromium aerosol using time-resolved laser-induced plasma spectroscopy,” Appl. Spectrosc. 54, 1279–1285 (2000).
    [CrossRef]
  7. J. Zhou, X. Hou, K. X. Yang, S.-J. Tsai, R. G. Michel, “Lasers based on optical parametric devices: wavelength tunability empowers laser-based techniques in the UV, visible, and near-IR,” Appl. Spectrosc. 52, 176A–189A (1998).
    [CrossRef]
  8. P. Stchur, K. X. Yang, X. Hou, T. Sun, R. G. Michel, “Laser excited atomic fluorescence spectrometry,” Spectrochim. Acta Part B 56, 1565–1592 (2001).
    [CrossRef]
  9. A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
    [CrossRef]
  10. S. Laville, F. Vidal, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Fluid modeling of the laser ablation depth as a function of the pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).
    [CrossRef]
  11. V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
    [CrossRef]
  12. M. Sabsabi, P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
    [CrossRef]
  13. C. Colón, G. Hatem, E. Verdugo, P. Ruiz, J. Campos, “Measurement of the stark broadening and shift parameters for several ultraviolet lines of singly ionized aluminum,” J. Appl. Phys. 73, 4752–4758 (1993).
    [CrossRef]

2002

L. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta Part B 57, 1109–1113 (2002).
[CrossRef]

S. Laville, F. Vidal, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Fluid modeling of the laser ablation depth as a function of the pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).
[CrossRef]

2001

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

P. Stchur, K. X. Yang, X. Hou, T. Sun, R. G. Michel, “Laser excited atomic fluorescence spectrometry,” Spectrochim. Acta Part B 56, 1565–1592 (2001).
[CrossRef]

2000

1999

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[CrossRef]

1998

1997

1995

1993

C. Colón, G. Hatem, E. Verdugo, P. Ruiz, J. Campos, “Measurement of the stark broadening and shift parameters for several ultraviolet lines of singly ionized aluminum,” J. Appl. Phys. 73, 4752–4758 (1993).
[CrossRef]

1992

W. Sdorra, J. Brust, K. Niemax, “Basic investigations for laser microanalysis: VI. The dependence on the laser wavelength in laser ablation,” Mikrochim. Acta. 108, 1–10 (1992).
[CrossRef]

1962

F. Brech, L. Cross, “Optical micromission stimulated by a ruby maser,” Appl. Spectrosc. 16, 59 (1962).

Barthélemy, O.

S. Laville, F. Vidal, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Fluid modeling of the laser ablation depth as a function of the pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).
[CrossRef]

Brech, F.

F. Brech, L. Cross, “Optical micromission stimulated by a ruby maser,” Appl. Spectrosc. 16, 59 (1962).

Brust, J.

W. Sdorra, J. Brust, K. Niemax, “Basic investigations for laser microanalysis: VI. The dependence on the laser wavelength in laser ablation,” Mikrochim. Acta. 108, 1–10 (1992).
[CrossRef]

Campos, J.

C. Colón, G. Hatem, E. Verdugo, P. Ruiz, J. Campos, “Measurement of the stark broadening and shift parameters for several ultraviolet lines of singly ionized aluminum,” J. Appl. Phys. 73, 4752–4758 (1993).
[CrossRef]

Chaker, M.

S. Laville, F. Vidal, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Fluid modeling of the laser ablation depth as a function of the pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).
[CrossRef]

Chaléard, C.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[CrossRef]

Cheng, M. D.

Cheung, N. H.

Cielo, P.

Colón, C.

C. Colón, G. Hatem, E. Verdugo, P. Ruiz, J. Campos, “Measurement of the stark broadening and shift parameters for several ultraviolet lines of singly ionized aluminum,” J. Appl. Phys. 73, 4752–4758 (1993).
[CrossRef]

Cross, L.

F. Brech, L. Cross, “Optical micromission stimulated by a ruby maser,” Appl. Spectrosc. 16, 59 (1962).

Detalle, V.

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[CrossRef]

Hatem, G.

C. Colón, G. Hatem, E. Verdugo, P. Ruiz, J. Campos, “Measurement of the stark broadening and shift parameters for several ultraviolet lines of singly ionized aluminum,” J. Appl. Phys. 73, 4752–4758 (1993).
[CrossRef]

Héon, R.

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Ho, W. F.

Hou, X.

Johnston, T. W.

S. Laville, F. Vidal, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Fluid modeling of the laser ablation depth as a function of the pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).
[CrossRef]

Lacour, J.-L.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[CrossRef]

Laville, S.

S. Laville, F. Vidal, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Fluid modeling of the laser ablation depth as a function of the pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).
[CrossRef]

Le Drogoff, B.

S. Laville, F. Vidal, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Fluid modeling of the laser ablation depth as a function of the pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).
[CrossRef]

Margot, J.

S. Laville, F. Vidal, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Fluid modeling of the laser ablation depth as a function of the pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).
[CrossRef]

Martin, M.

Mauchien, P.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[CrossRef]

Meynadier, P.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[CrossRef]

Michel, R. G.

Moenke-Blankenburg, L.

L. Moenke-Blankenburg, Laser Micro-Analysis (Wiley Interscience, New York, 1989).

Ng, C. W.

Niemax, K.

W. Sdorra, J. Brust, K. Niemax, “Basic investigations for laser microanalysis: VI. The dependence on the laser wavelength in laser ablation,” Mikrochim. Acta. 108, 1–10 (1992).
[CrossRef]

Nouvellon, C.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[CrossRef]

Palianov, P.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[CrossRef]

Perdrix, M.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[CrossRef]

Petite, G.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[CrossRef]

Radziemski, L.

L. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta Part B 57, 1109–1113 (2002).
[CrossRef]

Ruiz, P.

C. Colón, G. Hatem, E. Verdugo, P. Ruiz, J. Campos, “Measurement of the stark broadening and shift parameters for several ultraviolet lines of singly ionized aluminum,” J. Appl. Phys. 73, 4752–4758 (1993).
[CrossRef]

Sabsabi, M.

S. Laville, F. Vidal, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Fluid modeling of the laser ablation depth as a function of the pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).
[CrossRef]

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

M. Sabsabi, P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995).
[CrossRef]

Sallé, B.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[CrossRef]

Sdorra, W.

W. Sdorra, J. Brust, K. Niemax, “Basic investigations for laser microanalysis: VI. The dependence on the laser wavelength in laser ablation,” Mikrochim. Acta. 108, 1–10 (1992).
[CrossRef]

Semerok, A.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[CrossRef]

Stchur, P.

P. Stchur, K. X. Yang, X. Hou, T. Sun, R. G. Michel, “Laser excited atomic fluorescence spectrometry,” Spectrochim. Acta Part B 56, 1565–1592 (2001).
[CrossRef]

St-Onge, L.

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

Sun, T.

P. Stchur, K. X. Yang, X. Hou, T. Sun, R. G. Michel, “Laser excited atomic fluorescence spectrometry,” Spectrochim. Acta Part B 56, 1565–1592 (2001).
[CrossRef]

Tsai, S.-J.

Verdugo, E.

C. Colón, G. Hatem, E. Verdugo, P. Ruiz, J. Campos, “Measurement of the stark broadening and shift parameters for several ultraviolet lines of singly ionized aluminum,” J. Appl. Phys. 73, 4752–4758 (1993).
[CrossRef]

Vidal, F.

S. Laville, F. Vidal, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Fluid modeling of the laser ablation depth as a function of the pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).
[CrossRef]

Yang, K. X.

Zhou, J.

Appl. Spectrosc.

Appl. Surf. Sci.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[CrossRef]

J. Appl. Phys.

C. Colón, G. Hatem, E. Verdugo, P. Ruiz, J. Campos, “Measurement of the stark broadening and shift parameters for several ultraviolet lines of singly ionized aluminum,” J. Appl. Phys. 73, 4752–4758 (1993).
[CrossRef]

Mikrochim. Acta.

W. Sdorra, J. Brust, K. Niemax, “Basic investigations for laser microanalysis: VI. The dependence on the laser wavelength in laser ablation,” Mikrochim. Acta. 108, 1–10 (1992).
[CrossRef]

Phys. Rev. E

S. Laville, F. Vidal, T. W. Johnston, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabsabi, “Fluid modeling of the laser ablation depth as a function of the pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).
[CrossRef]

Spectrochim. Acta Part B

V. Detalle, R. Héon, M. Sabsabi, L. St-Onge, “An evaluation of a commercial échelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001).
[CrossRef]

L. Radziemski, “From LASER to LIBS, the path of technology development,” Spectrochim. Acta Part B 57, 1109–1113 (2002).
[CrossRef]

P. Stchur, K. X. Yang, X. Hou, T. Sun, R. G. Michel, “Laser excited atomic fluorescence spectrometry,” Spectrochim. Acta Part B 56, 1565–1592 (2001).
[CrossRef]

Other

L. Moenke-Blankenburg, Laser Micro-Analysis (Wiley Interscience, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Study of the buffer gas effect by use of two laser wavelengths in aluminum alloys.

Fig. 3
Fig. 3

Temporal evolution of Mg and Si lines in He and air environments by use of Er:YAG or Nd:YAG laser wavelengths.

Fig. 4
Fig. 4

Evaluation of the reproducibility of excitation temperature in two conditions of buffer gas, with the Er:YAG laser.

Fig. 5
Fig. 5

Temporal evolution of plasma excitation temperature in He and air environments by use of (a) Er:YAG or (b) Nd:YAG laser wavelengths.

Fig. 6
Fig. 6

Temporal evolution of plasma density in He and air environments by use of (a) Nd:YAG or (b) Er:YAG laser wavelengths.

Fig. 7
Fig. 7

Calibration curves obtained for Mg and Si in aluminum alloys in different surrounding atmospheres by use of different laser wavelengths.

Tables (1)

Tables Icon

Table 1 Composition (%) of Standard Aluminum Alloys

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔλStark=Δλobserved-Δλinstrument2wrefNeNeref,

Metrics